54 research outputs found

    Structure and texture of the quark mass matrix

    Full text link
    Starting from a weak basis in which the up (or down) quark matrix is diagonal, we obtain an exact set of equations for the quark mass matrix elements in terms of known observables. We make a numerical analysis of the down (up) quark mass matrix. Using the data available for the quark masses and mixing angles at different energy scales, we found a numerical expression for these matrices. We suggest that it is not possible to have an specific texture from this analysis. We also examine the most general case when the complex phases are introduced in the mass matrix. We find the numerical value for these phases as a function of ÎŽ\delta, the CP-violationg phase.Comment: 7 pages, we use the macros of Elsevie

    Prospects for Direct CP Violaton in Exclusive and Inclusive Charmless B decays

    Full text link
    Within the Standard Model, CP rate asymmetries for B→K−π+,0B\to K^-\pi^{+,0} could reach 10%. With strong final state phases, they could go up to 20--30%, even for Kˉ0π−\bar K^0\pi^- mode which would have opposite sign. We can account for K−π+K^-\pi^{+}, Kˉ0π−\bar K^0\pi^- and ϕK\phi K rate data with new physics enhanced color dipole coupling and destructive interference. Asymmetries could reach 40--60% for KπK\pi and ϕK\phi K modes and are all of the same sign. We are unable to account for K−π0K^-\pi^0 rate. Our inclusive study supports our exclusive results.Comment: Minor changes, correct a small bug in Fig. 1(b). Version to appear in Phys. Rev. Let

    Can the SO(10) Model with Two Higgs Doublets Reproduce the Observed Fermion Masses?

    Get PDF
    It is usually considered that the SO(10) model with one 10 and one 126 Higgs scalars cannot reproduce the observed quark and charged lepton masses. Against this conventional conjecture, we find solutions of the parameters which can give the observed fermion mass spectra. The SO(10) model with one 10 and one 120 Higgs scalars is also discussed.Comment: 7 pages, 1 figure, REVTe

    CP Violation for Leptons at Higher Energy Scales

    Full text link
    The phase convention independent measure of CP violation for three generations of leptons is evaluated at different energy scales. Unlike in the quark sector, this quantity does not vary much between the weak and the grand unification scales. The behavior of the measure of CP violation in the Standard Model is found to be different from that in the extensions of the Standard Model.Comment: 10 pages, 2 figures, references added, typos correcte

    Nonperturbative Determination of Heavy Meson Bound States

    Get PDF
    In this paper we obtain a heavy meson bound state equation from the heavy quark equation of motion in heavy quark effective theory (HQET) and the heavy meson effective field theory we developed very recently. The bound state equation is a covariant extention of the light-front bound state equation for heavy mesons derived from light-front QCD and HQET. We determine the covariant heavy meson wave function variationally by minimizing the binding energy Λˉ\bar{\Lambda}. Subsequently the other basic HQET parameters λ1\lambda_1 and λ2\lambda_2, and the heavy quark masses mbm_b and mcm_c can also be consistently determined.Comment: 15 pages, 1 figur

    Fermion masses and mixings in gauge theories

    Get PDF
    The recent evidence for neutrino oscillations stimulate us to discuss again the problem of fermion masses and mixings in gauge theories. In the standard model, several forms for quark mass matrices are equivalent. They become ansatze within most extensions of the standard model, where also relations between quark and lepton sectors may hold. In a seesaw framework, these relations can constrain the scale of heavy neutrino mass, which is often related to the scale of intermediate or unification gauge symmetry. As a consequence, two main scenarios arise. Hierarchies of masses and mixings may be explained by broken horizontal symmetries.Comment: 25 pages, RevTex, no figures. Few misprints corrected and two references adde

    Seesaw mechanism in three flavors

    Get PDF
    We advance a method used to analyse the neutrino properties (masses and mixing) in the seesaw mechanism. Assuming the hierarchical Dirac and light neutrino masses we establish rather simple relations between the light and the heavy neutrino parameters in the favored region of the solar and the atmospheric neutrino experiments. A empirical condition satisfied by the RH mixing angles is obtained.Comment: 19 pages. Acceptted by Phys. Rev. D The part about the neutrino experiments is selected as a single section. The mistakes in spelling and grammer are corrected. Also, some equations are neewly numbere

    The breaking of the flavour permutational symmetry: Mass textures and the CKM matrix

    Get PDF
    Different ansaetze for the breaking of the flavour permutational symmetry according to S(3)L X S(3)R in S(2)L X S(2) give different Hermitian mass matrices of the same modified Fritzsch type, which differ in the symmetry breaking pattern. In this work we obtain a clear and precise indication on the preferred symmetry breaking scheme from a fit of the predicted theoretical Vckm to the experimentally determined absolute values of the elements of the CKM matrix. The preferred scheme leads to simple mass textures and allows us to compute the CKM mixing matrix, the Jarlskog invariant J, and the three inner angles of the unitarity triangle in terms of four quark mass ratios and only one free parameter: the CP violating phase Phi. Excellent agreement with the experimentally determined absolute values of the entries in the CKM matrix is obtained for Phi = 90 deg. The corresponding computed values of the Jarlskog invariant and the inner angles are J = 3.00 X 10^-5, alpha= 84 deg, beta= 24 deg and gamma =72 deg in very good agreement with current data on CP violation in the neutral kaon-antikaon system and oscillations in the B-Bbar system.Comment: 21 pages, 1 fig. Content enlarged, references added and typos corrected. To be published in Phys Rev

    Radiative Corrections to the ZbbˉZ b \bar{b} Vertex and Constraints on Extended Higgs Sectors

    Full text link
    We explore the radiative corrections to the process Z→bbˉZ \to b \bar b in models with extended Higgs sectors. The observables Rb=Γ(Z→bbˉ)/Γ(Z→hadrons)R_b = \Gamma(Z \to b \bar b)/\Gamma(Z \to \rm{hadrons}) and the ZbbˉZ b \bar b coupling asymmetry, Ab=(gL2−gR2)/(gL2+gR2)A_b = (g_L^2 - g_R^2)/(g_L^2 + g_R^2), are sensitive to these corrections. We present general formulae for the one-loop corrections to RbR_b and AbA_b in an arbitrary extended Higgs sector, and derive explicit results for a number of specific models. We find that in models containing only doublets, singlets, or larger multiplets constrained by a custodial SU(2)cSU(2)_{c} symmetry so that MW=MZcos⁡ξWM_W = M_Z \cos\theta_W at tree level, the one-loop corrections due to virtual charged Higgs bosons always worsen agreement with experiment. The RbR_{b} measurement can be used to set lower bounds on the charged Higgs masses. Constraints on models due to the one-loop contributions of neutral Higgs bosons are also examined.Comment: 54 pages, 11 figure

    Three heavy jet events at hadron colliders as a sensitive probe of the Higgs sector

    Full text link
    Assuming that a non-standard neutral Higgs with an enhanced Yukawa coupling to a bottom quark is observed at future hadron experiments, we propose a method for a better understanding of the Higgs sector. Our procedure is based on "counting" the number of events with heavy jets (where "heavy" stands for a c or b jet) versus b jets, in the final state of processes in which the Higgs is produced in association with a single high p_T c or b jet. We show that an observed signal of the type proposed, at either the Tevatron or the LHC, will rule out the popular two Higgs doublet model of type II as well as its supersymmetric version - the Minimal Supersymmetric Standard Model (MSSM), and may provide new evidence in favor of some more exotic multi Higgs scenarios. As an example, we show that in a version of a two Higgs doublet model which naturally accounts for the large mass of the top quark, our signal can be easily detected at the LHC within that framework. We also find that such a signal may be observable at the upgraded Tevatron RunIII, if the neutral Higgs in this model has a mass around 100 GeV and \tan\beta > 50 and if the efficiency for distinguishing a c jet from a light jet will reach the level of 50%.Comment: Revtex, 11 pages, 4 figures embedded in the text. Main changes with respect to Version 1: Numerical results re-calculated using the CTEQ5L pdf, improved discussion on the experimental consequences, new references added. Conclusions remain unchanged. As will appear in Phys. Rev.
    • 

    corecore