1,059 research outputs found

    Vibrational strong coupling in liquid water from cavity molecular dynamics

    Full text link
    We assess the cavity molecular dynamics method for the calculation of vibrational polariton spectra, using liquid water as a specific example. We begin by disputing a recent suggestion that nuclear quantum effects may lead to a broadening of polariton bands, finding instead that they merely result in anharmonic red shifts in the polariton frequencies. We go on to show that our simulated cavity spectra can be reproduced to graphical accuracy with a harmonic model that uses just the cavity-free spectrum and the geometry of the cavity as input. We end by showing that this harmonic model can be combined with the experimental cavity-free spectrum to give results in good agreement with optical cavity measurements. Since the input to our harmonic model is equivalent to the input to the transfer matrix method of applied optics, we conclude that cavity molecular dynamics cannot provide any more insight into the effect of vibrational strong coupling on the absorption spectrum than this transfer matrix method, which is already widely used by experimentalists to corroborate their cavity results.Comment: 10 pages, 5 figure

    Spin dynamics of heterometallic Cr7M wheels (M = Mn, Zn, Ni) probed by inelastic neutron scattering

    Full text link
    Inelastic neutron scattering has been applied to the study of the spin dynamics of Cr-based antiferromagnetic octanuclear rings where a finite total spin of the ground state is obtained by substituting one Cr(III) ion (s = 3/2) with Zn (s = 0), Mn (s = 5/2) or Ni (s = 1) di-cations. Energy and intensity measurements for several intra-multiplet and inter-multiplet magnetic excitations allow us to determine the spin wavefunctions of the investigated clusters. Effects due to the mixing of different spin multiplets have been considered. Such effects proved to be important to correctly reproduce the energy and intensity of magnetic excitations in the neutron spectra. On the contrary to what is observed for the parent homonuclear Cr8 ring, the symmetry of the first excited spin states is such that anticrossing conditions with the ground state can be realized in the presence of an external magnetic field. Heterometallic Cr7M wheels are therefore good candidates for macroscopic observations of quantum effects.Comment: 9 pages, 11 figures, submitted to Phys. Rev. B, corrected typos and added references, one sentence change

    The effect of Maillard reaction products on zinc metabolism in the rat

    Get PDF
    The effect of giving Maillard reaction products (MRP) on zinc metabolism was investigated in the rat. In Expt 1, MRP were prepared by incubating casein with either glucose or lactose under controlled reaction conditions, and were quantified as either ‘early' or ‘advanced' after estimation of lysine loss and lysine destruction respectively. In Expt 2, the effect of the purified early MRP fructose-lysine (FL) on Zn metabolism was studied. The experimental diets containing 20 mg Zn/kg were given to weanling rats for 21 d. Zn balance was assessed over 9-14 d (Expt 1), or 1-14 d (Expt 2). Femur, liver, kidney and serum Zn concentrations were determined at 21 d. The major effect of the MRP in the casein-sugar mixtures was on urinary Zn excretion. The casein-glucose MRP induced up to a 6-fold increase in the quantity of Zn excreted in the urine. The magnitude of the hyperzincuria increased with the extent of the Maillard reaction. Similar dietary levels of casein-lactose MRP increased urinary Zn loss 2-fold. Free FL had no effect on urinary Zn. Faecal Zn, Zn retention, liver, femur and serum Zn were generally not influenced by giving MRP from casein-sugar mixtures or by giving free FL, although kidney Zn was decreased in rats fed on FL. It was concluded that although urinary Zn excretion can be increased by the presence of MRP in the diet, this is only a minor excretory pathway and would have little influence on overall Zn nutrition in individuals fed on a diet adequate in Z

    Causal inference in health and disease: a review of the principles and applications of Mendelian randomization

    Get PDF
    Mendelian randomization (MR) is a genetic epidemiological technique that uses genetic variation to infer causal relationships between modifiable exposures and outcome variables. Conventional observational epidemiological studies are subject to bias from a range of sources; MR analyses can offer an advantage in that they are less prone to bias as they use genetic variants inherited at conception as “instrumental variables”, which are proxies of an exposure. However, as with all research tools, MR studies must be carefully designed to yield valuable insights into causal relationships between exposures and outcomes, and to avoid biased or misleading results that undermine the validity of the causal inferences drawn from the study. In this review, we outline Mendel’s laws of inheritance, the assumptions and principles that underlie MR, MR study designs and methods, and how MR analyses can be applied and reported. Using the example of serum phosphate concentrations on liability to kidney stone disease we illustrate how MR estimates may be visualized and, finally, we contextualize MR in bone and mineral research including exemplifying how this technique could be employed to inform clinical studies and future guidelines concerning BMD and fracture risk. This review provides a framework to enhance understanding of how MR may be used to triangulate evidence and progress research in bone and mineral metabolism as we strive to infer causal effects in health and disease

    MCH Pheromone for Preventing Douglas-Fir Beetle Infestation in Windthrown Trees

    Get PDF
    A granular controlled-release formulation (98 percent inert, 2 percent 3-methyl-2-cyclohexen-1-one) was applied May 11-13, 1982, at 4.48 kg/ha to 76.9 ha of uninfested windthrown Douglas-fir by helicopter with a modified aerial spreader of 1.13 m³ capacity. Granules measured on treated plots averaged 2.04-2.69 kg/ha, sufficient to reduce Douglas-fir beetle (Dendroctonus pseudotsugae) infestation 96.4 percent by late June. The same MCH treatment reduced spruce beetle (Dendroctonus rufipennis) attacks by 55 percent in fewer, intermingled windthrown Engelmann spruce

    Absolute calibration and beam reconstruction of MITO (a ground-based instrument in the millimetric region)

    Full text link
    An efficient sky data reconstruction derives from a precise characterization of the observing instrument. Here we describe the reconstruction of performances of a single-pixel 4-band photometer installed at MITO (Millimeter and Infrared Testagrigia Observatory) focal plane. The strategy of differential sky observations at millimeter wavelengths, by scanning the field of view at constant elevation wobbling the subreflector, induces a good knowledge of beam profile and beam-throw amplitude, allowing efficient data recovery. The problems that arise estimating the detectors throughput by drift scanning on planets are shown. Atmospheric transmission, monitored by skydip technique, is considered for deriving final responsivities for the 4 channels using planets as primary calibrators.Comment: 14 pages, 6 fiugres, accepted for pubblication by New Astronomy (25 March

    Learning Contextual Inquiry and Distributed Cognition: a case study on technology use in anaesthesia

    Get PDF
    There have been few studies on how analysts learn or use frameworks to support gathering and analysis of field data. Distributed Cognition for Teamwork (DiCoT) is a framework that has been developed to facilitate the learning of Distributed Cognition (DCog), focusing on analysing small team interactions. DiCoT, in turn, exploits representations from Contextual Inquiry (CI). The present study is a reflective account of the experience of learning first CI and then DiCoT for studying the use of infusion devices in operating theatres. We report on how each framework supported a novice analyst (the first author) in structuring his data gathering and analysis, and the challenges that he faced. There are three contributions of this work: (1) an example of learning CI and DCog in a semi-structured way; (2) an account of the process and outcomes of learning and using CI and DiCoT in a complex setting; and (3) an outline account of information flow in anaesthesia. While CI was easier to learn and consequently gave better initial support to the novice analyst entering a complex work setting, DiCoT gave added value through its focus on information propagation and transformation as well as the roles of people and artefacts in supporting communication and situation awareness. This study makes visible many of the challenges of learning to apply a framework that are commonly encountered but rarely reported

    Fuel Dynamics After Reintroduced Fire in an Old-Growth Sierra Nevada Mixed-Conifer Forest

    Get PDF
    Background: Surface fuel loadings are some of the most important factors contributing to fire intensity and fire spread. In old-growth forests where fire has been long excluded, surface fuel loadings can be high and can include woody debris ≥100 cm in diameter. We assessed surface fuel loadings in a long-unburned old-growth mixed-conifer forest in Yosemite National Park, California, USA, and assessed fuel consumption from a management-ignited fire set to control the progression of the 2013 Rim Fire. Specifically, we characterized the distribution and heterogeneity of pre-fire fuel loadings, both along transects and contained in duff mounds around large trees. We compared surface fuel consumption to that predicted by the standard First Order Fire Effects Model (FOFEM) based on pre-fire fuel loadings and fuel moistures. We also assessed the relationship between tree basal area—calculated for two different spatial neighborhood scales—and pre-fire fuel loadings. Results: Pre-fire total surface fuel loading averaged 192 Mg ha−1 and was reduced by 79% by the fire to 41 Mg ha−1 immediately after fire. Most fuel components were reduced by 87% to 90% by the fire, with the exception of coarse woody debris (CWD), which was reduced by 60%. Litter depth in duff mounds were within 1 SD of plot means, but duff biomass for the largest trees (\u3e150 cm diameter at breast height [DBH]) exceeded plot background levels. Overstory basal area generally had significant positive relationships with pre-fire fuel loadings of litter, duff, 1-hour, and 10-hour fuels, but the strength of the relationships differed between overstory components (live, dead, all [live and dead], species), and negative relationships were observed between live Pinus lambertiana Douglas basal area and CWD. FOFEM over-predicted rotten CWD consumption and under-predicted duff consumption. Conclusions: Surface fuel loadings were characterized by heterogeneity and the presence of large pieces. This heterogeneity likely contributed to differential fire behavior at small scales and heterogeneity in the post-fire environment. The reductions in fuel loadings at our research site were in line with ecological restoration objectives; thus, ecologically restorative burning during fire suppression is possible
    corecore