6 research outputs found

    A space–time statistical climate model for hurricane intensification in the North Atlantic basin

    No full text
    Climate influences on hurricane intensification are investigated by averaging hourly intensification rates over the period 1975–2014 in 8° × 8° latitude–longitude grid cells. The statistical effects of hurricane intensity and sea-surface temperature (SST), along with the climatic effects of El Niño–Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and the Madden–Julian Oscillation (MJO), are quantified using a Bayesian hierarchical model fit to the averaged data. As expected, stronger hurricanes tend to have higher intensification rates, especially over the warmest waters. Of the three climate variables considered, the NAO has the largest effect on intensification rates after controlling for intensity and SST. The model shows an average increase in intensification rates of 0.18 [0.06, 0.31] m s<sup>−1</sup> h<sup>−1</sup> (95 % credible interval) for every 1 standard deviation decrease in the NAO index. Weak trade winds associated with the negative phase of the NAO might result in less vertical wind shear and thus higher mean intensification rates

    Spatial Characteristics of Rain Fields Associated with Tropical Cyclones Landfalling over the Western Gulf of Mexico and Caribbean Sea

    No full text
    The western Gulf Coast and Caribbean coast are regions that are highly vulnerable to precipitation associated with tropical cyclones (TCs). Defining the spatial dimensions of TC rain fields helps determine the timing and duration of rainfall for a given location. Therefore, this study measured the area, dispersion, and displacement of light and moderate rain fields associated with 35 TCs making landfalls in this region and explored conditions contributing to their spatial variability. The spatial patterns of satellite-estimated rain rates are determined through hot spot analysis. Rainfall coverage is largest as TCs approach the western Caribbean coast, and smaller as TCs move over the Gulf of Mexico (GM) after making landfall over the Yucatan Peninsula. The rain fields are displaced eastward and northward over the western and central Caribbean Sea and the central GM. Rainfall fields have more displacement toward the west and south, which is over land, when TCs move over the southern GM, possibly as a result of the influence of Central American gyres. The area and dispersion of rainfall are significantly correlated with storm intensity and total precipitable water. The displacement of rainfall is significantly correlated with vertical wind shear. Over the Bay of Campeche, TC precipitation extends westward, which may be related to the convergence of moisture above the boundary layer from the Pacific Ocean and near-surface convergence enhanced by land. Additionally, half of the storms produce rainfall over land about 48 h before landfall. TCs may produce light rainfall over land for more than 72 h in this region
    corecore