22 research outputs found

    Differential immune activation following encapsulation of CpG oligodeoxynucleotides in nanoliposomes

    Get PDF
    Cataloged from PDF version of article.The immunogenicity of a vaccine formulation is closely related to the effective internalization by the innate immune cells that provide prolonged and simultaneous delivery of antigen and adjuvant to relevant antigen presenting cells. Endosome associated TLR9 recognizes microbial unmethylated CpG DNA. Clinical applications of TLR9 ligands are significantly hampered due to their pre-mature in vivo digestion and rapid clearance. Liposome encapsulation is a powerful tool to increase in vivo stability as well as enhancing internalization of its cargo to relevant immune cells. The present study established that encapsulating CpG motifs in different liposomes having different physicochemical properties altered not only encapsulation efficiency, but also the release and delivery rates that ultimately impacted in vitro and ex-vivo cytokine production rates and types. Moreover, different liposomes encapsulating CpG ODN significantly increased Th1-biased cytokines and chemokines gene transcripts Additional studies demonstrated that co-stimulatory and surface marker molecules significantly upregulated upon liposome/CpG injection. Finally, co-encapsulating model antigen ovalbumin with CpG ODN adjuvant in nanoliposomes profoundly augmented Th1 and cell mediated anti-Ova specific immune response. Collectively, this work established an unappreciated immunoregulatory property of nanoliposomes mediating immunity against protein antigen and could be harnessed to design more effective therapeutic vaccines or stand alone immunoprotective agents targeting infectious diseases, as well as cancer or allergy. © 2010 Elsevier Ltd

    Removal of Open Safety Pins From the Stomach and Duodenum of Infants Without Enterotomy

    No full text
    WOS: A1995QV24600025Twelve infants aged 6-18 months with ingested open safety pins (OSPs) were operated upon between 1984 and 1993. The OSPs were wide-open in 4 and the retention time was more than 3 days in S. At laparotomy the stomach and duodenum were explored and the OSP and a Levin tube inserted previously from mouth to stomach were identified by palpation. The pin was inserted through the holes of the tube and locked intraluminally without opening the stomach and the tube was then withdrawn from the mouth with the OSP at its tip. When the OSP was located in the duodenum, it was squeezed back into stomach for removal. If the OSP could not be squeezed back into the stomach due to an unfavorable position, it was locked intraluminally and milked distally for spontaneous discharge, No complications related to the procedure were encountered. In conclusion, if non-operative methods fail and/or endoscopic systems are not available for the removal of retained OSPs, the proposed technique, which avoids enterotomy and related complications, is recommended

    Rare isolated primary peritoneal hydatid cysts: A case report from Syria

    No full text

    Sympathetic tone dictates the impact of lipolysis on FABP4 secretion

    No full text
    Levels of circulating fatty acid binding protein 4 (FABP4) protein are strongly associated with obesity and metabolic disease in both mice and humans, and secretion is stimulated by β-adrenergic stimulation both in vivo and in vitro. Previously, lipolysis-induced FABP4 secretion was found to be significantly reduced upon pharmacological inhibition of adipose triglyceride lipase (ATGL) and was absent from adipose tissue explants from mice specifically lacking ATGL in their adipocytes (ATGLAdpKO). Here, we find that upon activation of β-adrenergic receptors in vivo, ATGLAdpKO mice unexpectedly exhibited significantly higher levels of circulating FABP4 as compared with ATGLfl/fl controls, despite no corresponding induction of lipolysis. We generated an additional model with adipocyte-specific deletion of both FABP4 and ATGL (ATGL/FABP4AdpKO) to evaluate the cellular source of this circulating FABP4. In these animals, there was no evidence of lipolysis-induced FABP4 secretion, indicating that the source of elevated FABP4 levels in ATGLAdpKO mice was indeed from the adipocytes. ATGLAdpKO mice exhibited significantly elevated corticosterone levels, which positively correlated with plasma FABP4 levels. Pharmacological inhibition of sympathetic signaling during lipolysis using hexamethonium or housing mice at thermoneutrality to chronically reduce sympathetic tone significantly reduced FABP4 secretion in ATGLAdpKO mice compared with controls. Therefore, activity of a key enzymatic step of lipolysis mediated by ATGL, per se, is not required for in vivo stimulation of FABP4 secretion from adipocytes, which can be induced through sympathetic signaling

    The BTB-ZF transcription factor Zbtb20 is driven by Irf4 to promote plasma cell differentiation and longevity

    Get PDF
    The transcriptional network regulating antibody-secreting cell (ASC) differentiation has been extensively studied, but our current understanding is limited. The mechanisms of action of known "master" regulators are still unclear, while the participation of new factors is being revealed. Here, we identify Zbtb20, a Bcl6 homologue, as a novel regulator of late B cell development. Within the B cell lineage, Zbtb20 is specifically expressed in B1 and germinal center B cells and peaks in long-lived bone marrow (BM) ASCs. Unlike Bcl6, an inhibitor of ASC differentiation, ectopic Zbtb20 expression in primary B cells facilitates terminal B cell differentiation to ASCs. In plasma cell lines, Zbtb20 induces cell survival and blocks cell cycle progression. Immunized Zbtb20-deficient mice exhibit curtailed humoral responses and accelerated loss of antigen-specific plasma cells, specifically from the BM pool. Strikingly, Zbtb20 induction does not require Blimp1 but depends directly on Irf4, acting at a newly identified Zbtb20 promoter in ASCs. These results identify Zbtb20 as an important player in late B cell differentiation and provide new insights into this complex process

    MicroRNA-132 enhances transition from inflammation to proliferation during wound healing.

    No full text
    Wound healing is a complex process that is characterized by an initial inflammatory phase followed by a proliferative phase. This transition is a critical regulatory point; however, the factors that mediate this process are not fully understood. Here, we evaluated microRNAs (miRs) in skin wound healing and characterized the dynamic change of the miRNome in human skin wounds. miR-132 was highly upregulated during the inflammatory phase of wound repair, predominantly expressed in epidermal keratinocytes, and peaked in the subsequent proliferative phase. TGF-β1 and TGF-β2 induced miR-132 expression in keratinocytes, and transcriptome analysis of these cells revealed that miR-132 regulates a large number of immune response- and cell cycle-related genes. In keratinocytes, miR-132 decreased the production of chemokines and the capability to attract leukocytes by suppressing the NF-κB pathway. Conversely, miR-132 increased activity of the STAT3 and ERK pathways, thereby promoting keratinocyte growth. Silencing of the miR-132 target heparin-binding EGF-like growth factor (HB-EGF) phenocopied miR-132 overexpression in keratinocytes. Using mouse and human ex vivo wound models, we found that miR-132 blockade delayed healing, which was accompanied by severe inflammation and deficient keratinocyte proliferation. Together, our results indicate that miR-132 is a critical regulator of skin wound healing that facilitates the transition from the inflammatory to the proliferative phase

    The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy

    Get PDF
    Pathological growth of cardiomyocytes (hypertrophy) is a major determinant for the development of heart failure, one of the leading medical causes of mortality worldwide. Here we show that the microRNA (miRNA)-212/132 family regulates cardiac hypertrophy and autophagy in cardiomyocytes. Hypertrophic stimuli upregulate cardiomyocyte expression of miR-212 and miR-132, which are both necessary and sufficient to drive the hypertrophic growth of cardiomyocytes. MiR-212/132 null mice are protected from pressure-overload-induced heart failure, whereas cardiomyocyte-specific overexpression of the miR-212/132 family leads to pathological cardiac hypertrophy, heart failure and death in mice. Both miR-212 and miR-132 directly target the anti-hypertrophic and pro-autophagic FoxO3 transcription factor and overexpression of these miRNAs leads to hyperactivation of pro-hypertrophic calcineurin/NFAT signalling and an impaired autophagic response upon starvation. Pharmacological inhibition of miR-132 by antagomir injection rescues cardiac hypertrophy and heart failure in mice, offering a possible therapeutic approach for cardiac failure
    corecore