1,268 research outputs found

    Stability and drift of underwater vehicle dynamics: Mechanical systems with rigid motion symmetry

    Get PDF
    This paper develops the stability theory of relative equilibria for mechanical systems with symmetry. It is especially concerned with systems that have a noncompact symmetry group, such as the group of Euclidean motions, and with relative equilibria for such symmetry groups. For these systems with rigid motion symmetry, one gets stability but possibly with drift in certain rotational as well as translational directions. Motivated by questions on stability of underwater vehicle dynamics, it is of particular interest that, in some cases, we can allow the relative equilibria to have nongeneric values of their momentum. The results are proved by combining theorems of Patrick with the technique of reduction by stages. This theory is then applied to underwater vehicle dynamics. The stability of specific relative equilibria for the underwater vehicle is studied. For example, we find conditions for Liapunov stability of the steadily rising and possibly spinning, bottom-heavy vehicle, which corresponds to a relative equilibrium with nongeneric momentum. The results of this paper should prove useful for the control of underwater vehicles

    Joint Centrality Distinguishes Optimal Leaders in Noisy Networks

    Full text link
    We study the performance of a network of agents tasked with tracking an external unknown signal in the presence of stochastic disturbances and under the condition that only a limited subset of agents, known as leaders, can measure the signal directly. We investigate the optimal leader selection problem for a prescribed maximum number of leaders, where the optimal leader set minimizes total system error defined as steady-state variance about the external signal. In contrast to previously established greedy algorithms for optimal leader selection, our results rely on an expression of total system error in terms of properties of the underlying network graph. We demonstrate that the performance of any given set of leaders depends on their influence as determined by a new graph measure of centrality of a set. We define the joint  centralityjoint \; centrality of a set of nodes in a network graph such that a leader set with maximal joint centrality is an optimal leader set. In the case of a single leader, we prove that the optimal leader is the node with maximal information centrality. In the case of multiple leaders, we show that the nodes in the optimal leader set balance high information centrality with a coverage of the graph. For special cases of graphs, we solve explicitly for optimal leader sets. We illustrate with examples.Comment: Conditionally accepted to IEEE TCN

    Matching and stabilization by the method of controlled Lagrangians

    Get PDF
    We describe a class of mechanical systems for which the “method of controlled Lagrangians” provides a family of control laws that stabilize an unstable (relative) equilibrium. The controlled Lagrangian approach involves making modifications to the Lagrangian for the uncontrolled system such that the Euler-Lagrange equations derived from the modified or “controlled” Lagrangian describe the closed-loop system. For the closed-loop equations to be consistent with available control inputs, the modifications to the Lagrangian must satisfy “matching” conditions. Our matching and stabilizability conditions are constructive; they provide the form of the controlled Lagrangian, the control law and, in some cases, conditions on the control gain(s) to ensure stability. The method is applied to stabilization of an inverted spherical pendulum on a cart and to stabilization of steady rotation of a rigid spacecraft about its unstable intermediate axis using an internal rotor

    Stabilization of mechanical systems using controlled Lagrangians

    Get PDF
    We propose an algorithmic approach to stabilization of Lagrangian systems. The first step involves making admissible modifications to the Lagrangian for the uncontrolled system, thereby constructing what we call the controlled Lagrangian. The Euler-Lagrange equations derived from the controlled Lagrangian describe the closed-loop system where new terms are identified with control forces. Since the controlled system is Lagrangian by construction, energy methods can be used to find control gains that yield closed-loop stability. The procedure is demonstrated for the problem of stabilization of an inverted pendulum on a cart and for the problem of stabilization of rotation of a rigid spacecraft about its unstable intermediate axis using a single internal rotor. Similar results hold for the dynamics of an underwater vehicle

    Stabilization of the pendulum on a rotor arm by the method of controlled Lagrangians

    Get PDF
    Obtains feedback stabilization of an inverted pendulum on a rotor arm by the “method of controlled Lagrangians”. This approach involves modifying the Lagrangian for the uncontrolled system so that the Euler-Lagrange equations derived from the modified or “controlled” Lagrangian describe the closed-loop system. For the closed-loop equations to be consistent with available control inputs, the modifications to the Lagrangian must satisfy “matching” conditions. The pendulum on a rotor arm requires an interesting generalization of our earlier approach which was used for systems such as a pendulum on a cart

    Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem

    Get PDF
    We develop a method for the stabilization of mechanical systems with symmetry based on the technique of controlled Lagrangians. The procedure involves making structured modifications to the Lagrangian for the uncontrolled system, thereby constructing the controlled Lagrangian. The Euler-Lagrange equations derived from the controlled Lagrangian describe the closed-loop system, where new terms in these equations are identified with control forces. Since the controlled system is Lagrangian by construction, energy methods can be used to find control gains that yield closed-loop stability. We use kinetic shaping to preserve symmetry and only stabilize systems module the symmetry group. The procedure is demonstrated for several underactuated balance problems, including the stabilization of an inverted planar pendulum on a cart moving on a line and an inverted spherical pendulum on a cart moving in the plane

    Potential and kinetic shaping for control of underactuated mechanical systems

    Get PDF
    This paper combines techniques of potential shaping with those of kinetic shaping to produce some new methods for stabilization of mechanical control systems. As with each of the techniques themselves, our method employs energy methods and the LaSalle invariance principle. We give explicit criteria for asymptotic stabilization of equilibria of mechanical systems which, in the absence of controls, have a kinetic energy function that is invariant under an Abelian group

    Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping

    Get PDF
    For pt.I, see ibid., vol.45, p.2253-70 (2000). We extend the method of controlled Lagrangians (CL) to include potential shaping, which achieves complete state-space asymptotic stabilization of mechanical systems. The CL method deals with mechanical systems with symmetry and provides symmetry-preserving kinetic shaping and feedback-controlled dissipation for state-space stabilization in all but the symmetry variables. Potential shaping complements the kinetic shaping by breaking symmetry and stabilizing the remaining state variables. The approach also extends the method of controlled Lagrangians to include a class of mechanical systems without symmetry such as the inverted pendulum on a cart that travels along an incline
    corecore