3,530 research outputs found

    Simulating extreme-mass-ratio systems in full general relativity

    Full text link
    We introduce a new method for numerically evolving the full Einstein field equations in situations where the spacetime is dominated by a known background solution. The technique leverages the knowledge of the background solution to subtract off its contribution to the truncation error, thereby more efficiently achieving a desired level of accuracy. We demonstrate the method by applying it to the radial infall of a solar-type star into supermassive black holes with mass ratios 106\geq 10^6. The self-gravity of the star is thus consistently modeled within the context of general relativity, and the star's interaction with the black hole computed with moderate computational cost, despite the over five orders of magnitude difference in gravitational potential (as defined by the ratio of mass to radius). We compute the tidal deformation of the star during infall, and the gravitational wave emission, finding the latter is close to the prediction of the point-particle limit.Comment: 6 pages, 5 figures; added one figure, revised to match PRD RC versio

    Ultrarelativistic black hole formation

    Full text link
    We study the ultrarelativistic head-on collision of equal mass particles, modeled as self-gravitating fluid spheres, by numerically solving the coupled Einstein-hydrodynamic equations. We focus on cases well within the kinetic energy dominated regime, where between 88-92% (γ=8\gamma=8 to 12) of the initial net energy of the spacetime resides in the translation kinetic energy of the particles. We find that for sufficiently large boosts, black hole formation occurs. Moreover, near yet above the threshold of black hole formation, the collision initially leads to the formation of two distinct apparent horizons that subsequently merge. We argue that this can be understood in terms of a focusing effect, where one boosted particle acts as a gravitational lens on the other and vice versa, and that this is further responsible for the threshold being lower (by a factor of a few) compared to simple hoop conjecture estimates. Cases slightly below threshold result in complete disruption of the model particles. The gravitational radiation emitted when black holes form reaches luminosities of 0.014 c5/Gc^5/G, carrying 16±216\pm2% of the total energy.Comment: 5 pages, 4 figures; revised to match PRL versio

    Superradiant Instability and Backreaction of Massive Vector Fields around Kerr Black Holes

    Full text link
    We study the growth and saturation of the superradiant instability of a complex, massive vector (Proca) field as it extracts energy and angular momentum from a spinning black hole, using numerical solutions of the full Einstein-Proca equations. We concentrate on a rapidly spinning black hole (a=0.99a=0.99) and the dominant m=1m=1 azimuthal mode of the Proca field, with real and imaginary components of the field chosen to yield an axisymmetric stress-energy tensor and, hence, spacetime. We find that in excess of 9%9\% of the black hole's mass can be transferred into the field. In all cases studied, the superradiant instability smoothly saturates when the black hole's horizon frequency decreases to match the frequency of the Proca cloud that spontaneously forms around the black hole.Comment: 6 pages, 6 figures; revised to match PRL versio

    Comparing Fully General Relativistic and Newtonian Calculations of Structure Formation

    Full text link
    In the standard approach to studying cosmological structure formation, the overall expansion of the Universe is assumed to be homogeneous, with the gravitational effect of inhomogeneities encoded entirely in a Newtonian potential. A topic of ongoing debate is to what degree this fully captures the dynamics dictated by general relativity, especially in the era of precision cosmology. To quantitatively assess this, we directly compare standard N-body Newtonian calculations to full numerical solutions of the Einstein equations, for cold matter with various magnitude initial inhomogeneities on scales comparable to the Hubble horizon. We analyze the differences in the evolution of density, luminosity distance, and other quantities defined with respect to fiducial observers. This is carried out by reconstructing the effective spacetime and matter fields dictated by the Newtonian quantities, and by taking care to distinguish effects of numerical resolution. We find that the fully general relativistic and Newtonian calculations show excellent agreement, even well into the nonlinear regime. They only notably differ in regions where the weak gravity assumption breaks down, which arise when considering extreme cases with perturbations exceeding standard values.Comment: 17 pages, 14 figures; revised to match PRD versio

    Eccentric mergers of black holes with spinning neutron stars

    Full text link
    We study dynamical capture binary black hole-neutron star (BH-NS) mergers focusing on the effects of the neutron star spin. These events may arise in dense stellar regions, such as globular clusters, where the majority of neutron stars are expected to be rapidly rotating. We initialize the BH-NS systems with positions and velocities corresponding to marginally unbound Newtonian orbits, and evolve them using general-relativistic hydrodynamical simulations. We find that even moderate spins can significantly increase the amount of mass in unbound material. In some of the more extreme cases, there can be up to a third of a solar mass in unbound matter. Similarly, large amounts of tidally stripped material can remain bound and eventually accrete onto the BH---as much as a tenth of a solar mass in some cases. These simulations demonstrate that it is important to treat neutron star spin in order to make reliable predictions of the gravitational wave and electromagnetic transient signals accompanying these sources.Comment: 7 pages, 4 figures; revised to match published versio
    corecore