129 research outputs found

    Sequential roles for myosin-X in BMP6-dependent filopodial extension, migration, and activation of BMP receptors

    Get PDF
    Endothelial cell migration is an important step during angiogenesis, and its dysregulation contributes to aberrant neovascularization. The bone morphogenetic proteins (BMPs) are potent stimulators of cell migration and angiogenesis. Using microarray analyses, we find that myosin-X (Myo10) is a BMP target gene. In endothelial cells, BMP6-induced Myo10 localizes in filopodia, and BMP-dependent filopodial assembly decreases when Myo10 expression is reduced. Likewise, cellular alignment and directional migration induced by BMP6 are Myo10 dependent. Surprisingly, we find that Myo10 and BMP6 receptor ALK6 colocalize in a BMP6-dependent fashion. ALK6 translocates into filopodia after BMP6 stimulation, and both ALK6 and Myo10 possess intrafilopodial motility. Additionally, Myo10 is required for BMP6-dependent Smad activation, indicating that in addition to its function in filopodial assembly, Myo10 also participates in a requisite amplification loop for BMP signaling. Our data indicate that Myo10 is required to guide endothelial migration toward BMP6 gradients via the regulation of filopodial function and amplification of BMP signals

    Automated segmentation of tissue images for computerized IHC analysis

    Get PDF
    This paper presents two automated methods for the segmentation ofimmunohistochemical tissue images that overcome the limitations of themanual approach aswell as of the existing computerized techniques. The first independent method, based on unsupervised color clustering, recognizes automatically the target cancerous areas in the specimen and disregards the stroma; the second method, based on colors separation and morphological processing, exploits automated segmentation of the nuclear membranes of the cancerous cells. Extensive experimental results on real tissue images demonstrate the accuracy of our techniques compared to manual segmentations; additional experiments show that our techniques are more effective in immunohistochemical images than popular approaches based on supervised learning or active contours. The proposed procedure can be exploited for any applications that require tissues and cells exploration and to perform reliable and standardized measures of the activity of specific proteins involved in multi-factorial genetic pathologie

    Initial multicenter experience with double nucleoside therapy for human immunodeficiency virus infection during pregnancy.

    Get PDF
    OBJECTIVE: To study maternal and neonatal effects of combination nucleoside analog therapy administered to human immunodeficiency virus (HIV)-infected pregnant women for maternal indications. METHODS: A multicenter, prospective observational study was undertaken at six perinatal centers in the United States and Canada that supported regional referral programs for the treatment of HIV-infected pregnant women. Demographic, laboratory, and pregnancy outcome data were collected for 39 women whose antiretroviral treatment regimens were expanded to include more than one nucleoside analog for maternal indications. The 40 newborns were monitored at pediatric referral centers through at least three months of age to ascertain their HIV infection status. RESULTS: For all 39 women, zidovudine (ZDV) therapy was instituted at 13.4 +/- 8.2 weeks, with a second agent (lamivudine [3TC] in 85% of cases) being added at a mean gestational age of 17.6 weeks. Duration of therapy with two agents was 20.6 +/- 10.4 weeks overall, with no women stopping medications because of side effects or toxicity. No significant changes in maternal laboratory values were seen, except for an increase in mean corpuscular volume, over the course of pregnancy. No clinically significant adverse neonatal outcomes were noted, with all but the three preterm newborns leaving hospital with their mothers. Neonatal anemia (hematocrit < 50%) was seen in 62% of newborns, with no children needing transfusion; mild elevations of liver function tests, primarily aspartate aminotransferase, were noted in 58% of newborns tested, though none were clinically jaundiced. Overall rate of neonatal HIV infection was 2.5% (95% confidence interval: 0.1-13.2%). CONCLUSION: Combination antiretroviral therapy during pregnancy with two nucleoside analogs was well-tolerated by mothers and newborns, with no significant short-term toxicities or side effects noted. Surveillance of exposed newborns' hematologic and liver function appears warranted

    Loss of VGLUT3 Produces Circadian-Dependent Hyperdopaminergia and Ameliorates Motor Dysfunction and l-Dopa-Mediated Dyskinesias in a Model of Parkinson\u27s Disease.

    Get PDF
    UNLABELLED: The striatum is essential for many aspects of mammalian behavior, including motivation and movement, and is dysfunctional in motor disorders such as Parkinson\u27s disease. The vesicular glutamate transporter 3 (VGLUT3) is expressed by striatal cholinergic interneurons (CINs) and is thus well positioned to regulate dopamine (DA) signaling and locomotor activity, a canonical measure of basal ganglia output. We now report that VGLUT3 knock-out (KO) mice show circadian-dependent hyperlocomotor activity that is restricted to the waking cycle and is due to an increase in striatal DA synthesis, packaging, and release. Using a conditional VGLUT3 KO mouse, we show that deletion of the transporter from CINs, surprisingly, does not alter evoked DA release in the dorsal striatum or baseline locomotor activity. The mice do, however, display changes in rearing behavior and sensorimotor gating. Elevation of DA release in the global KO raised the possibility that motor deficits in a Parkinson\u27s disease model would be reduced. Remarkably, after a partial 6-hydroxydopamine (6-OHDA)-mediated DA depletion (∼70% in dorsal striatum), KO mice, in contrast to WT mice, showed normal motor behavior across the entire circadian cycle. l-3,4-dihydroxyphenylalanine-mediated dyskinesias were also significantly attenuated. These findings thus point to new mechanisms to regulate basal ganglia function and potentially treat Parkinson\u27s disease and related disorders. SIGNIFICANCE STATEMENT: Dopaminergic signaling is critical for both motor and cognitive functions in the mammalian nervous system. Impairments, such as those found in Parkinson\u27s disease patients, can lead to severe motor deficits. Vesicular glutamate transporter 3 (VGLUT3) loads glutamate into secretory vesicles for neurotransmission and is expressed by discrete neuron populations throughout the nervous system. Here, we report that the absence of VGLUT3 in mice leads to an upregulation of the midbrain dopamine system. Remarkably, in a Parkinson\u27s disease model, the mice show normal motor behavior. They also show fewer abnormal motor behaviors (dyskinesias) in response to l-3,4-dihydroxyphenylalanine, the principal treatment for Parkinson\u27s disease. The work thus suggests new avenues for the development of novel treatment strategies for Parkinson\u27s disease and potentially other basal-ganglia-related disorders

    Prediction of pH Change in Processed Acidified Turnips

    Get PDF
    The acetic acid uptake by turnips was studied during an acidification process in containers. The process was successfully described by a Fickian diffusion, using a correlation for the buffer effect. Diffusion coefficients (0.629 to 3.99 × 10-9 m2/sec) and partition coefficients (0.8 to 1.1) were obtained by optimization of the fit between experimental and theoretical values, using the simplex method. The partition coefficient did not show an evident dependence on temperature, while diffusivity followed an Arrhenius type behavior. The relationship between acid concentration and pH was described using a cubic model with parameters independent of temperature. Results showed that the combination of these models describing the acid diffusion into the food and the buffering effects of the food allowed accurate prediction of pH evolution in the acidification process

    Sensing of formetanate pesticide in fruits with a boron-doped diamond electrode

    Get PDF
    This study describes the development of a simple and accurate methodology for carbamate pesticide formetanate (FMT) analysis in fruits based on the use of a boron-diamond doped electrode (BDDE) cathodically pretreated and on the forward component of the current of square-wave voltammetry (SWV). FMT exhibits a well-defined irreversible oxidation process, which reaction mechanism is diffusion-controlled, involves the participation of one electron and is influenced by the electrolyte pH. However, protonation does not participate in the rate-determining step in the redox process. The optimum experimental and voltammetric conditions were pH 7.0 (0.04 mol L−1 Britton-Robinson buffer), pulse potential frequency of 20 s−1, amplitude of the pulse of 25 mV, and height of the potential step of 3 mV. Under the optimum conditions, calibration curve was linear from 4.98 × 10−7 to 1.70 × 10−5 mol L−1 FMT with a limit of detection of 3.7 × 10−7 mol L−1. FMT sensing was performed in different fruits (mango and grape). Recoveries ranged from 95.2 ± 2.8 to 104.0 ± 3.5% for mango and 96.5 ± 2.5 to 105.2 ± 3.5% for grape proving the accuracy and precision of the electroanalytical methodology. The attained data validated the applicability of the developed approach for FMT quantification in fruits.info:eu-repo/semantics/publishedVersio

    Human Myo19 Is a Novel Myosin that Associates with Mitochondria

    Get PDF
    Mitochondria are pleomorphic organelles [1, 2] that have central roles in cell physiology. Defects in their localization and dynamics lead to human disease [3-5]. Myosins are actin-based motors that power processes such as muscle contraction, cytokinesis, and organelle transport [6]. Here we report the initial characterization of myosin-XIX (Myo19), the founding member of a novel class of myosin that associates with mitochondria. The 970aa heavy chain consists of a motor domain, three IQ motifs, and a short tail. Myo19 mRNA is expressed in multiple tissues and antibodies to human Myo19 detect a ∼109kD band in multiple cell lines. Both endogenous Myo19 and GFP-Myo19 exhibit striking localization to mitochondria. Deletion analysis reveals that the Myo19 tail is necessary and sufficient for mitochondrial localization. Expressing full-length GFP-Myo19 in A549 cells reveals a remarkable gain-of-function where the majority of the mitochondria move continuously. Moving mitochondria travel for many microns with an obvious leading end and distorted shape. The motility and shape-change are sensitive to latrunculin B, indicating that both are actin-dependent. Expressing the GFP-Myo19 tail in CAD cells resulted in decreased mitochondrial run lengths in neurites. These results suggest that this novel myosin functions as an actin-based motor for mitochondrial movement in vertebrate cells

    In Situ-Targeting of Dendritic Cells with Donor-Derived Apoptotic Cells Restrains Indirect Allorecognition and Ameliorates Allograft Vasculopathy

    Get PDF
    Chronic allograft vasculopathy (CAV) is an atheromatous-like lesion that affects vessels of transplanted organs. It is a component of chronic rejection that conventional immuno-suppression fails to prevent, and is a major cause of graft loss. Indirect allo-recognition through T cells and allo-Abs are critical during CAV pathogenesis. We tested whether the indirect allo-response and its impact on CAV is down-regulated by in situ-delivery of donor Ags to recipient's dendritic cells (DCs) in lymphoid organs in a pro-tolerogenic fashion, through administration of donor splenocytes undergoing early apoptosis. Following systemic injection, donor apoptotic cells were internalized by splenic CD11chi CD8α+ and CD8− DCs, but not by CD11cint plasmacytoid DCs. Those DCs that phagocytosed apoptotic cells in vivo remained quiescent, resisted ex vivo-maturation, and presented allo-Ag for up to 3 days. Administration of donor apoptotic splenocytes, unlike cells alive, (i) promoted deletion, FoxP3 expression and IL-10 secretion, and decreased IFN-γ-release in indirect pathway CD4 T cells; and (ii) reduced cross-priming of anti-donor CD8 T cells in vivo. Targeting recipient's DCs with donor apoptotic cells reduced significantly CAV in a fully-mismatched aortic allograft model. The effect was donor specific, dependent on the physical characteristics of the apoptotic cells, and was associated to down-regulation of the indirect type-1 T cell allo-response and secretion of allo-Abs, when compared to recipients treated with donor cells alive or necrotic. Down-regulation of indirect allo-recognition through in situ-delivery of donor-Ag to recipient's quiescent DCs constitutes a promising strategy to prevent/ameliorate indirect allorecognition and CAV

    SJS/TEN 2019: From Science to Translation

    Get PDF
    Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) are potentially life-threatening, immune-mediated adverse reactions characterized by widespread erythema, epidermal necrosis, and detachment of skin and mucosa. Efforts to grow and develop functional international collaborations and a multidisciplinary interactive network focusing on SJS/TEN as an uncommon but high burden disease will be necessary to improve efforts in prevention, early diagnosis and improved acute and long-term management. SJS/TEN 2019: From Science to Translation was a 1.5-day scientific program held April 26-27, 2019, in Vancouver, Canada. The meeting successfully engaged clinicians, researchers, and patients and conducted many productive discussions on research and patient care needs
    corecore