14,645 research outputs found

    Riccati parameter modes from Newtonian free damping motion by supersymmetry

    Full text link
    We determine the class of damped modes \tilde{y} which are related to the common free damping modes y by supersymmetry. They are obtained by employing the factorization of Newton's differential equation of motion for the free damped oscillator by means of the general solution of the corresponding Riccati equation together with Witten's method of constructing the supersymmetric partner operator. This procedure leads to one-parameter families of (transient) modes for each of the three types of free damping, corresponding to a particular type of %time-dependent angular frequency. %time-dependent, antirestoring acceleration (adding up to the usual Hooke restoring acceleration) of the form a(t)=\frac{2\gamma ^2}{(\gamma t+1)^{2}}\tilde{y}, where \gamma is the family parameter that has been chosen as the inverse of the Riccati integration constant. In supersymmetric terms, they represent all those one Riccati parameter damping modes having the same Newtonian free damping partner modeComment: 6 pages, twocolumn, 6 figures, only first 3 publishe

    Einstein's equations and the chiral model

    Get PDF
    The vacuum Einstein equations for spacetimes with two commuting spacelike Killing field symmetries are studied using the Ashtekar variables. The case of compact spacelike hypersurfaces which are three-tori is considered, and the determinant of the Killing two-torus metric is chosen as the time gauge. The Hamiltonian evolution equations in this gauge may be rewritten as those of a modified SL(2) principal chiral model with a time dependent `coupling constant', or equivalently, with time dependent SL(2) structure constants. The evolution equations have a generalized zero-curvature formulation. Using this form, the explicit time dependence of an infinite number of spatial-diffeomorphism invariant phase space functionals is extracted, and it is shown that these are observables in the sense that they Poisson commute with the reduced Hamiltonian. An infinite set of observables that have SL(2) indices are also found. This determination of the explicit time dependence of an infinite set of spatial-diffeomorphism invariant observables amounts to the solutions of the Hamiltonian Einstein equations for these observables.Comment: 22 pages, RevTeX, to appear in Phys. Rev.

    Pure-radiation gravitational fields with a simple twist and a Killing vector

    Get PDF
    Pure-radiation solutions are found, exploiting the analogy with the Euler- Darboux equation for aligned colliding plane waves and the Euler-Tricomi equation in hydrodynamics of two-dimensional flow. They do not depend on one of the spacelike coordinates and comprise the Hauser solution as a special subcase.Comment: revtex, 9 page

    Observables for spacetimes with two Killing field symmetries

    Full text link
    The Einstein equations for spacetimes with two commuting spacelike Killing field symmetries are studied from a Hamiltonian point of view. The complexified Ashtekar canonical variables are used, and the symmetry reduction is performed directly in the Hamiltonian theory. The reduced system corresponds to the field equations of the SL(2,R) chiral model with additional constraints. On the classical phase space, a method of obtaining an infinite number of constants of the motion, or observables, is given. The procedure involves writing the Hamiltonian evolution equations as a single `zero curvature' equation, and then employing techniques used in the study of two dimensional integrable models. Two infinite sets of observables are obtained explicitly as functionals of the phase space variables. One set carries sl(2,R) Lie algebra indices and forms an infinite dimensional Poisson algebra, while the other is formed from traces of SL(2,R) holonomies that commute with one another. The restriction of the (complex) observables to the Euclidean and Lorentzian sectors is discussed. It is also shown that the sl(2,R) observables can be associated with a solution generating technique which is linked to that given by Geroch.Comment: 23 pages (LateX-RevTeX), Alberta-Thy-55-9

    U-Duality and Symplectic Formulation of Dilaton-Axion Gravity

    Full text link
    We study a bosonic four--dimensional effective action corresponding to the heterotic string compactified on a 6--torus (dilaton--axion gravity with one vector field) on a curved space--time manifold possessing a time--like Killing vector field. Previously an existence of the SO(2,3)Sp(4,R)SO(2,3)\sim Sp(4, R) global symmetry (UU--duality) as well as the symmetric space property of the corresponding σ\sigma--model have been established following Neugebauer and Kramer approach. Here we present an explicit form of the Sp(4,R)Sp(4, R) generators in terms of coset variables and construct a representation of the coset in terms of the physical target space coordinates. Complex symmetric 2×22\times 2 matrix ZZ (``matrix dilaton --axion'') is introduced for which UU--duality takes the matrix valued SL(2,R)SL(2, R) form. In terms of this matrix the theory is further presented as a K\"ahler σ\sigma--model. This leads to a more concise 2×22\times 2 formulation which opens new ways to construct exact classical solutions. New solution (corresponding to constant ImZ{\rm Im} Z ) is obtained which describes the system of point massless magnetic monopoles endowed with axion charges equal to minus monopole charges. In such a system mutual magnetic repulsion is exactly balanced by axion attraction so that the resulting space time is locally flat but possesses multiple Taub--NUT singularities.Comment: LATEX, 20 pages, no figure

    Constants of motion for vacuum general relativity

    Get PDF
    The 3+1 Hamiltonian Einstein equations, reduced by imposing two commuting spacelike Killing vector fields, may be written as the equations of the SL(2,R)SL(2,R) principal chiral model with certain `source' terms. Using this formulation, we give a procedure for generating an infinite number of non-local constants of motion for this sector of the Einstein equations. The constants of motion arise as explicit functionals on the phase space of Einstein gravity, and are labelled by sl(2,R) indices.Comment: 10 pages, latex, version to appear in Phys. Rev. D

    New first integral for twisting type-N vacuum gravitational fields with two non-commuting Killing vectors

    Get PDF
    A new first integral for the equations corresponding to twisting type-N vacuum gravitational fields with two non-commuting Killing vectors is introduced. A new reduction of the problem to a complex second-order ordinary differential equation is given. Alternatively, the mentioned first integral can be used in order to provide a first integral of the second-order complex equation introduced in a previous treatment of the problem.Comment: 7 pages, LaTeX, uses ioplppt.sty and iopl12.sty; to be published in Class. Quantum Gra

    Chiral corrections to the isovector double scattering term for the pion-deuteron scattering length

    Full text link
    The empirical value of the real part of the pion-deuteron scattering length can be well understood in terms of the dominant isovector πN\pi N-double scattering contribution. We calculate in chiral perturbation theory all one-pion loop corrections to this double scattering term which in the case of πN\pi N-scattering close the gap between the current-algebra prediction and the empirical value of the isovector threshold T-matrix TπNT_{\pi N}^-. In addition to closing this gap there is in the πd\pi d-system a loop-induced off-shell correction for the exchanged virtual pion. Its coordinate space representation reveals that it is equivalent to 2π2\pi-exchange in the deuteron. We evaluate the chirally corrected double scattering term and the off-shell contribution with various realistic deuteron wave functions. We find that the off-shell correction contributes at most -8% and that the isovector double scattering term explains at least 90% of the empirical value of the real part of the πd\pi d-scattering length.Comment: 4 pages, 2 figures, to be published in The Physical Review

    Solution generating with perfect fluids

    Full text link
    We apply a technique, due to Stephani, for generating solutions of the Einstein-perfect fluid equations. This technique is similar to the vacuum solution generating techniques of Ehlers, Harrison, Geroch and others. We start with a ``seed'' solution of the Einstein-perfect fluid equations with a Killing vector. The seed solution must either have (i) a spacelike Killing vector and equation of state P=rho or (ii) a timelike Killing vector and equation of state rho+3P=0. The new solution generated by this technique then has the same Killing vector and the same equation of state. We choose several simple seed solutions with these equations of state and where the Killing vector has no twist. The new solutions are twisting versions of the seed solutions

    Switching dynamics between metastable ordered magnetic state and nonmagnetic ground state - A possible mechanism for photoinduced ferromagnetism -

    Full text link
    By studying the dynamics of the metastable magnetization of a statistical mechanical model we propose a switching mechanism of photoinduced magnetization. The equilibrium and nonequilibrium properties of the Blume-Capel (BC) model, which is a typical model exhibiting metastability, are studied by mean field theory and Monte Carlo simulation. We demonstrate reversible changes of magnetization in a sequence of changes of system parameters, which would model the reversible photoinduced magnetization. Implications of the calculated results are discussed in relation to the recent experimental results for prussian blue analogs.Comment: 12 pages, 13 figure
    corecore