47 research outputs found

    La recherche expérimentale en aérodynamique à l’ONERA – L’exemple du buffet transsonique

    Get PDF
    International audienceThe paper reviews research conducted at ONERA over the last thirty years on the transonic buffet. We first present the transonic buffet phenomenon and we explain its importance for aeronautical applications. Then, a distinction is made between the 2D buffet produced by an airfoil and the 3D buffet that characterizes swept wings of finite span. The 2D buffet amounts to a pure oscillation of the shock phase-locked with the detachment and reattachment of the boundary layer downstream, whereas the 3D buffet takes the form of a pocket of broadband perturbations located in a limitedportion of the wing. We recall that these mechanisms were first studied in the 1980s through a series of tests conducted in the transonic wind tunnel ONERA T2 at Toulouse and in the large transonic wind tunnel ONERA S2Ma at Modane. Since this pioneering work, progress in the measurement techniques has led to the constitution of a comprehensive database of the 2D buffet that we describe. This database, obtained in the wind tunnel ONERA S3Ch at Meudon, has been extensively used to validate various CFD tools, with the latter being used in turn to investigate the buffet physics. We illustrate this collaboration between simulation and physics by recalling that a linear stability analysis of accurate Reynolds-Averaged-Navier-Stokes (RANS) solutions made it possible to prove that the buffet on a 2D airfoil stems from a global instability mechanism.We also review more recent tests done in the case of a laminar airfoil, which reveal very distinct behaviors of the buffet flow. This illustrates how sensitive the buffet is to the nature of the boundary layer. The last section of the paper gives a short overview of advanced simulations for these different test cases. In the conclusion, we list research perspectives, which include some more general topics such as data assimilation.L'article passe en revue les recherches menées à l'ONERA au cours des trente dernières années sur le buffet transsonique. Nous présentons d'abord le phénomène du buffet transsonique et nous expliquons son importance pour les applications aéronautiques. On distingue ensuite le buffet 2D produit par une aile bidimensionnelle et le buffet 3D qui caractérise les ailes en flèches d’envergure finie. Le buffet 2D se présente sous la forme d’une oscillation d’ensemble de tout l’écoulement couplant un déplacement de l’onde de choc et le décollement de la couche limite en aval de ce choc. Le buffet 3D prend quant à lui la forme d'une poche de perturbations localisées dans une portion limitée de l'aile. Nous rappelons que ces mécanismes ont d'abord été étudiés à l’ONERA dans les années 80 à travers une série de tests réalisés dans la soufflerie transsonique T2 à Toulouse et dans la grande soufflerie transsonique S2 de Modane. Ces travaux pionniers ont ensuite été approfondis dans la soufflerie S3Ch de Meudon de manière à élaborer une base de données complète du buffet 2D sur une aile 2D en régime turbulent, que nous décrivons. Cette base de données a été utilisée de façon extensive, à l’ONERA et dans d’autres institutions pour valider différents outils de simulation, ces derniers étant alors utilisés à leur tour pour étudier la physique du buffet. Nous illustrons cette collaboration entre la simulation et la physique en rappelant qu'une analyse de stabilité linéaire de solutions précises des équations de Navier-Stokes moyennées au sens de Reynolds (RANS) a permis de prouver que le buffet 2D provient d'un mécanisme d'instabilité globale. Nous passons également en revue des essais plus récents réalisés dans la soufflerie S3Ch sur le cas d'une aile 2D laminaire qui révèlent des comportements très distincts par rapport au cas turbulent. Cela illustre la sensibilité du buffet à la nature de la couche limite. Le dernier paragraphe du document donne un bref aperçu des simulations avancées de ces différents cas tests. Dans la conclusion, nous énumérons les perspectives de recherche sur le sujet, qui incluent aussi des thématiques méthodologiques plus générales telles que l'assimilation de données

    4th European Drag Reduction Meeting on Turbulence Control by Passive Means

    No full text

    Density measurements using the Background Oriented13; Schlieren technique

    Get PDF
    This paper describes the implementation of a13; novel technique called Background Oriented Schlieren that13; can produce quantitative visualization of density in a flow.13; This technique uses only a digital still camera, a structured13; background, and inverse tomographic algorithms which13; can extract two-dimensional slices from a three-dimensional13; flow. This has been applied to obtain the density13; field for an axisymmetric supersonic flow over a conecylinder13; model. Comparisons with cone tables show13; excellent agreement

    Status of Wake Vortex Alleviation in the Framework of European Collaboration: Validation Using Tests and CFD Results

    No full text
    This document provides a synthesis of recent research studies that have been conducted in the last decade within several European projects from the 5th and 6th Framework Programmes. All these studies aimed at a better characterization of aircraft wake vortices and then at their subsequent control. In the latter case, the goal is to minimize the strength of such vortices in the far-field. At first, characterisation of wake vortex using complementary tools (testing facilities, flight tests, simulations and theory) will be briefly evoked. Secondly, information will be provided on the main principles for wake vortex alleviation. At last, results and then recommendations will be detailed from the considered practical approaches

    Transonic Buffet Control on 3D Turbulent Wings using Fluidic Devices. Part 1: Open loop study

    No full text
    This paper presents an overview of the work performed at Onera over the last decade on the control of the buffet phenomenon. This aerodynamic instability induces strong wall pressure fluctuations and as such limits aircraft envelope, consequently it is interesting to try to delay its onset, in order to improve aircraft performance, but also to provide more flexibility during the design phase. Several types of flow control have been investigated, either passive (mechanical vortex generators) or active (fluidic VGs, fluidic trailing-edge device (TED)). It is shown than mechanical and fluidic VGs are able to delay buffet onset in the angle-of-attack domain by suppressing the separation downstream of the shock. The effect of the fluidic TED is different, the separation is not suppressed but the rear wing loading is increased and consequently the buffet onset is not delayed to higher angles of attack, but only to higher lift coefficient. The objective of these wind tunnel tests was to prepare the closed-loop control of the buffet phenomenon, to adapt the mass flow rate to the aerodynamic conditions

    Buffet Characterization and Control for Turbulent Wings

    No full text
    International audienceThe objective of this paper is to present an overview of the work performed at Onera over the last decade on the characterization and control of the buffet phenomenon.This aerodynamic instability induces strong wall pressure fluctuations and as such limits aircraft envelope, consequently it is interesting to understand the origin of this instability and to try to delay its onset, in order to improve aircraft performance, but also to provide more flexibility during the design phase. First, results from wind tunnel tests on 2D airfoils are presented to explain the 2D buffet phenomenon and since it is used as validation test case for numerical simulations. Then, results from several wind tunnel tests on a 3D configuration are presented. The 3D buffet phenomenon is characterized using steady and unsteady wall pressure measurements and LDV. Then, several types of flow control have been investigated, either passive (mechanical vortex generators) or active (fluidic VGs, fluidic trailing-edge device (TED)). It is shown than mechanical and fluidic VGs are able to delay buffet onset in the angle-of-attack domain by suppressing the separation downstream of the shock. The effect of the fluidic TED is different, the separation is not suppressed but the rear wing loading is increased and consequently the buffet onset is not delayed in the angle-of-attack domain, but only in the lift domain.Closed-loop control of the fluidic VGs is also investigated, to adapt the mass flow rate to the aerodynamic conditions
    corecore