339 research outputs found
Rapid Phenotype-Driven Gene Sequencing with the NeoSeq Panel: A Diagnostic Tool for Critically Ill Newborns with Suspected Genetic Disease
New genomic sequencing techniques have shown considerable promise in the field of neonatology, increasing the diagnostic rate and reducing time to diagnosis. However, several obstacles have hindered the incorporation of this technology into routine clinical practice. We prospectively evaluated the diagnostic rate and diagnostic turnaround time achieved in newborns with suspected genetic diseases using a rapid phenotype-driven gene panel (NeoSeq) containing 1870 genes implicated in congenital malformations and neurological and metabolic disorders of early onset (<2 months of age). Of the 33 newborns recruited, a genomic diagnosis was established for 13 (39.4%) patients (median diagnostic turnaround time, 7.5 days), resulting in clinical management changes in 10 (76.9%) patients. An analysis of 12 previous prospective massive sequencing studies (whole genome (WGS), whole exome (WES), and clinical exome (CES) sequencing) in newborns admitted to neonatal intensive care units (NICUs) with suspected genetic disorders revealed a comparable median diagnostic rate (37.2%), but a higher median diagnostic turnaround time (22.3 days) than that obtained with NeoSeq. Our phenotype-driven gene panel, which is specific for genetic diseases in critically ill newborns is an affordable alternative to WGS and WES that offers comparable diagnostic efficacy, supporting its implementation as a first-tier genetic test in NICUs
Utility of Gene Panels for the Diagnosis of Inborn Errors of Metabolism in a Metabolic Reference Center
Next-generation sequencing (NGS) technologies have been proposed as a first-line test for the diagnosis of inborn errors of metabolism (IEM), a group of genetically heterogeneous disorders with overlapping or nonspecific phenotypes. Over a 3-year period, we prospectively analyzed 311 pediatric patients with a suspected IEM using four targeted gene panels. The rate of positive diagnosis was 61.86% for intermediary metabolism defects, 32.84% for complex molecular defects, 19% for hypoglycemic/hyperglycemic events, and 17% for mitochondrial diseases, and a conclusive molecular diagnosis was established in 2-4 weeks. Forty-one patients for whom negative results were obtained with the mitochondrial diseases panel underwent subsequent analyses using the NeuroSeq panel, which groups all genes from the individual panels together with genes associated with neurological disorders (1870 genes in total). This achieved a diagnostic rate of 32%. We next evaluated the utility of a tool, Phenomizer, for differential diagnosis, and established a correlation between phenotype and molecular findings in 39.3% of patients. Finally, we evaluated the mutational architecture of the genes analyzed by determining z-scores, loss-of-function observed/expected upper bound fraction (LOEUF), and haploinsufficiency (HI) scores. In summary, targeted gene panels for specific groups of IEMs enabled rapid and effective diagnosis, which is critical for the therapeutic management of IEM patients.info:eu-repo/semantics/publishedVersio
Proteins Inform Survival-Based Differences in Patients with Glioblastoma
Background: Improving the care of patients with glioblastoma (GB) requires accurate and reliable predictors of patient prognosis. Unfortunately, while protein markers are an effective readout of cellular function, proteomics has been underutilized in GB prognostic marker discovery. Methods: For this study, GB patients were prospectively recruited and proteomics discovery using liquid chromatography-mass spectrometry analysis (LC-MS/MS) was performed for 27 patients including 13 short-term survivors (STS) (≤10 months) and 14 long-term survivors (LTS) (≥18 months). Results: Proteomics discovery identified 11 941 peptides in 2495 unique proteins, with 469 proteins exhibiting significant dysregulation when comparing STS to LTS. We verified the differential abundance of 67 out of these 469 proteins in a small previously published independent dataset. Proteins involved in axon guidance were upregulated in STS compared to LTS, while those involved in p53 signaling were upregulated in LTS. We also assessed the correlation between LS MS/MS data with RNAseq data from the same discovery patients and found a low correlation between protein abundance and mRNA expression. Finally, using LC-MS/MS on a set of 18 samples from 6 patients, we quantified the intratumoral heterogeneity of more than 2256 proteins in the multisample dataset. Conclusions: These proteomic datasets and noted protein variations present a beneficial resource for better predicting patient outcome and investigating potential therapeutic targets
3D Printing of Dietary Products for the Management of Inborn Errors of Intermediary Metabolism in Pediatric Populations
The incidence of Inborn Error of Intermediary Metabolism (IEiM) diseases may be low, yet collectively, they impact approximately 6–10% of the global population, primarily affecting children. Precise treatment doses and strict adherence to prescribed diet and pharmacological treatment regimens are imperative to avert metabolic disturbances in patients. However, the existing dietary and pharmacological products suffer from poor palatability, posing challenges to patient adherence. Furthermore, frequent dose adjustments contingent on age and drug blood levels further complicate treatment. Semi-solid extrusion (SSE) 3D printing technology is currently under assessment as a pioneering method for crafting customized chewable dosage forms, surmounting the primary limitations prevalent in present therapies. This method offers a spectrum of advantages, including the flexibility to tailor patient-specific doses, excipients, and organoleptic properties. These elements are pivotal in ensuring the treatment’s efficacy, safety, and adherence. This comprehensive review presents the current landscape of available dietary products, diagnostic methods, therapeutic monitoring, and the latest advancements in SSE technology. It highlights the rationale underpinning their adoption while addressing regulatory aspects imperative for their seamless integration into clinical practice
What’s hot and what’s not: making sense of biodiversity ‘hotspots’
Conserving biogeographic regions with especially high biodiversity, known as biodiversity ‘hotspots’, is intuitive because finite resources can be focussed towards manageable units. Yet, biodiversity, environmental conditions and their relationship are more complex with multidimensional properties. Assessments which ignore this risk failing to detect change, identify its direction or gauge the scale of appropriate intervention. Conflicting concepts which assume assemblages as either sharply delineated communities or loosely collected species have also hampered progress in the way we assess and conserve biodiversity. We focus on the marine benthos where delineating manageable areas for conservation is an attractive prospect because it holds most marine species and constitutes the largest single ecosystem on earth by area. Using two large UK marine benthic faunal datasets, we present a spatially gridded data sampling design to account for survey effects which would otherwise be the principal drivers of diversity estimates. We then assess γ‐diversity (regional richness) with diversity partitioned between α (local richness) and β (dissimilarity), and their change in relation to covariates to test whether defining and conserving biodiversity hotspots is an effective conservation strategy in light of the prevailing forces structuring those assemblages. α‐, β‐ and γ‐diversity hotspots were largely inconsistent with each metric relating uniquely to the covariates, and loosely collected species generally prevailed with relatively few distinct assemblages. Hotspots could therefore be an unreliable means to direct conservation efforts if based on only a component part of diversity. When assessed alongside environmental gradients, α‐, β‐ and γ‐diversity provide a multidimensional but still intuitive perspective of biodiversity change that can direct conservation towards key drivers and the appropriate scale for intervention. Our study also highlights possible temporal declines in species richness over 30 years and thus the need for future integrated monitoring to reveal the causal drivers of biodiversity change
Multiscale, multimodal analysis of tumor heterogeneity in IDH1 mutant vs wild-type diffuse gliomas.
Glioma is recognized to be a highly heterogeneous CNS malignancy, whose diverse cellular composition and cellular interactions have not been well characterized. To gain new clinical- and biological-insights into the genetically-bifurcated IDH1 mutant (mt) vs wildtype (wt) forms of glioma, we integrated data from protein, genomic and MR imaging from 20 treatment-naïve glioma cases and 16 recurrent GBM cases. Multiplexed immunofluorescence (MxIF) was used to generate single cell data for 43 protein markers representing all cancer hallmarks, Genomic sequencing (exome and RNA (normal and tumor) and magnetic resonance imaging (MRI) quantitative features (protocols were T1-post, FLAIR and ADC) from whole tumor, peritumoral edema and enhancing core vs equivalent normal region were also collected from patients. Based on MxIF analysis, 85,767 cells (glioma cases) and 56,304 cells (GBM cases) were used to generate cell-level data for 24 biomarkers. K-means clustering was used to generate 7 distinct groups of cells with divergent biomarker profiles and deconvolution was used to assign RNA data into three classes. Spatial and molecular heterogeneity metrics were generated for the cell data. All features were compared between IDH mt and IDHwt patients and were finally combined to provide a holistic/integrated comparison. Protein expression by hallmark was generally lower in the IDHmt vs wt patients. Molecular and spatial heterogeneity scores for angiogenesis and cell invasion also differed between IDHmt and wt gliomas irrespective of prior treatment and tumor grade; these differences also persisted in the MR imaging features of peritumoral edema and contrast enhancement volumes. A coherent picture of enhanced angiogenesis in IDHwt tumors was derived from multiple platforms (genomic, proteomic and imaging) and scales from individual proteins to cell clusters and heterogeneity, as well as bulk tumor RNA and imaging features. Longer overall survival for IDH1mt glioma patients may reflect mutation-driven alterations in cellular, molecular, and spatial heterogeneity which manifest in discernable radiological manifestations
Newborn screening for medium-chain acyl-CoA dehydrogenase deficiency: regional experience and high incidence of carnitine deficiency
Background
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common inherited defect in the mitochondrial fatty acid oxidation pathway, resulting in significant morbidity and mortality in undiagnosed patients.
Newborn screening (NBS) has considerably improved MCADD outcome, but the risk of complication remains in some patients. The aim of this study was to evaluate the relationship between genotype, biochemical parameters and clinical data at diagnosis and during follow-up, in order to optimize monitoring of these patients.
Methods
We carried out a multicenter study in southwest Europe, of MCADD patients detected by NBS. Evaluated NBS data included free carnitine (C0) and the acylcarnitines C8, C10, C10:1 together with C8/C2 and C8/C10 ratios, clinical presentation parameters and genotype, in 45 patients. Follow-up data included C0 levels, duration of carnitine supplementation and occurrence of metabolic crises.
Results
C8/C2 ratio and C8 were the most accurate biomarkers of MCADD in NBS. We found a high number of patients homozygous for the prevalent c.985A > G mutation (75%). Moreover, in these patients C8, C8/C10 and C8/C2 were higher than in patients with other genotypes, while median value of C0 was significantly lower (23 μmol/L vs 36 μmol/L).
The average follow-up period was 43 months. To keep carnitine levels within the normal range, carnitine supplementation was required in 82% of patients, and for a longer period in patients homozygotes for the c.985A>G mutation than in patients with other genotypes (average 31 vs 18 months). Even with treatment, median C0 levels remained lower in homozygous patients than in those with other genotypes (14 μmol/L vs 22 μmol/L).
Two patients died and another three suffered a metabolic crisis, all of whom were homozygous for the c.985 A>G mutation.
Conclusions
Our data show a direct association between homozygosity for c.985A>G and lower carnitine values at diagnosis, and a higher dose of carnitine supplementation for maintenance within the normal range. This study contributes to a better understanding of the relationship between genotype and phenotype in newborn patients with MCADD detected through screening which could be useful in improving follow-up strategies and clinical outcome
Optimal -beam at the CERN-SPS
A -beam with maximum (for \helio ions) or
(for \neon) could be achieved at the CERN-SPS. We study the sensitivity to
and of such a beam as function of , optimizing
with the baseline constrained to CERN-Frejus (130 km), and also with
simultaneous variation of the baseline. These results are compared to the {\it
standard} scenario previously considered, with lower , and also
with a higher option that requires a more powerful
accelerator. Although higher is better, loss of sensitivity to and is most pronounced for below 100.Comment: 22 page
V232D Mutation in Patients With Cystic Fibrosis: Not So Rare, Not So Mild
The frequency of some Cystic Fibrosis (CF) Transmembrane Conductance Regulator gene (CFTR) mutations varies between populations. Genetic testing during newborn screening (NBS) for CF can identify less common mutations with low clinical expression in childhood and previously considered mild but not fully characterized, such as the mutation p.Val232Asp (c.695T > A). The aim of this study was to describe CF patients with the V232D mutation. We identify CF children with the V232D mutation detected by NBS and compare them with CF adults with this mutation whose diagnosis was prompted by clinical symptoms in the same period. We studied clinical, biochemical, spirometric, and prognostic features in both populations. NBS program tested 276,523 children during a period of 14 years (2003-2017) and identified 54 cases of CF. Six children (11%) had the V232D mutation. Over the same period, 5 adults (age 37.6 ± 16.29 years old) with symptoms of CF and this mutation were also diagnosed. Follow-up duration was mean 10.1 years for adults and mean 6.5 years for children. In the adult group, lung function was impaired at diagnosis in all patients (Forced Expiratory Volume1-FEV1-67.12% ± 13.09) and worsened in children tested during evolution (FEV1first: 113%; FEV1last: 64%). Pancreatic insufficiency was present in adult group, with recurrent pancreatitis in 1 present. Although with less clinical expression in children, V232D is associated with pulmonary and pancreatic involvement during adulthood and CF cannot be considered mild. This mutation is present in 11% of all patients diagnosed with CF in our region. Its inclusion in some NBS programs should be taken into account in order to improve the prognosis of affected children.S
- …