179 research outputs found

    The baboon (Papio anubis) extracranial carotid artery: An anatomical guide for endovascular experimentation

    Get PDF
    BACKGROUND: As novel endovascular strategies are developed for treating neurological disease, there is an increasing need to evaluate these techniques in relevant preclinical models. The use of non-human primates is especially critical given their structural and physiological homology with humans. In order to conduct primate endovascular studies, a comprehensive understanding of the carotid anatomy is necessary. We therefore performed a detailed examination of the vessel lengths, lumen diameters and angles of origin of the baboon extracranial carotid system. METHODS: We characterized the extracranial carotid system often male baboons (Papio anubis, range 15.1–28.4 kg) by early post-mortem dissection. Photographic documentation of vessel lengths, lumen diameters, and angles of origin were measured for each segment of the carotid bilaterally. RESULTS: The common carotid arteries averaged 94.7 ± 1.7 mm (left) and 87.1 ± 1.6 mm (right) in length. The average minimal common carotid lumen diameters were 3.0 ± 0.3 mm (left) and 2.9 ± 0.2 mm (right). Each animal had a common brachiocephalic artery arising from the aorta which bifurcated into the left common carotid artery and right braciocephalic artery after 21.5 ± 1.6 mm. The vascular anatomy was found to be consistent among animals despite a wide range of animal weights. CONCLUSIONS: The consistency in the Papio anubis extracranial carotid system may promote the use of this species in the preclinical investigation of neuro-interventional therapies

    Adherence with isoniazid for prevention of tuberculosis among HIV-infected adults in South Africa

    Get PDF
    BACKGROUND: Tuberculosis (TB) is the most common opportunistic infection in HIV-infected adults in developing countries. Isoniazid (INH) is recommended for treatment of latent TB infection, however non-adherence is common. The purpose of this study was to apply in-house prepared isoniazid (INH) urine test strips in a clinical setting, and identify predictors of positive test results in an adherence questionnaire in HIV-infected adults taking INH for prevention of TB. METHODS: Cross-sectional study of adherence using a questionnaire and urine test strips for detection of INH metabolites at two hospitals in Pietermaritzburg, South Africa. Participants were aged at least 18 years, HIV positive, and receiving INH for prevention of tuberculosis disease. Univariate and multivariate analyses are used to identify factors relevant to adherence. RESULTS: 301 consecutive patients were recruited. 28% of participants had negative urine tests. 32 (37.2%, 95% CI25.4, 45.0) of the 86 patients who received INH from peripheral pharmacies said the pharmacy had run out of INH at some time, compared with central hospital pharmacies (p = 0.0001). In univariate analysis, a negative test was associated with self-reported missed INH doses (p = 0.043). Each 12-hour increment since last reported dose increased the likelihood of a negative test by 34% (p = 0.0007). Belief in INH safety was associated with a positive test (p = 0.021). In multivariate analysis, patients who believed INH is important for prevention of TB disease were more likely to be negative (p = 0.0086). CONCLUSION: Adequate drug availability at peripheral pharmacies remains an important intervention for TB prevention. Key questions may identify potentially non-adherent patients. In-house prepared urine tests strips are an effective and cheap method of objectively assessing INH adherence, and could be used an important tool in TB control programs

    Mutant Prourokinase with Adjunctive C1-Inhibitor Is an Effective and Safer Alternative to tPA in Rat Stroke

    Get PDF
    A single-site mutant (M5) of native urokinase plasminogen activator (prouPA) induces effective thrombolysis in dogs with venous or arterial thrombosis with a reduction in bleeding complications compared to tPA. This effect, related to inhibition of two-chain M5 (tcM5) by plasma C1-inhibitor (C1I), thereby preventing non-specific plasmin generation, was augmented by the addition of exogenous C1I to plasma in vitro. In the present study, tPA, M5 or placebo +/− C1I were administered in two rat stroke models. In Part-I, permanent MCA occlusion was used to evaluate intracranial hemorrhage (ICH) by the thrombolytic regimens. In Part II, thromboembolic occlusion was used with thrombolysis administered 2 h later. Infarct and edema volumes, and ICH were determined at 24 h, and neuroscore pre (2 h) and post (24 h) treatment. In Part I, fatal ICH occurred in 57% of tPA and 75% of M5 rats. Adjunctive C1I reduced this to 25% and 17% respectively. Similarly, semiquantitation of ICH by neuropathological examination showed significantly less ICH in rats given adjunctive C1I compared with tPA or M5 alone. In Part-II, tPA, M5, and M5+C1I induced comparable ischemic volume reductions (>55%) compared with the saline or C1I controls, indicating the three treatments had a similar fibrinolytic effect. ICH was seen in 40% of tPA and 50% of M5 rats, with 1 death in the latter. Only 17% of the M5+C1I rats showed ICH, and the bleeding score in this group was significantly less than that in either the tPA or M5 group. The M5+C1I group had the best Benefit Index, calculated by dividing percent brain salvaged by the ICH visual score in each group. In conclusion, adjunctive C1I inhibited bleeding by M5, induced significant neuroscore improvement and had the best Benefit Index. The C1I did not compromise fibrinolysis by M5 in contrast with tPA, consistent with previous in vitro findings

    Inhibition of Pediatric Glioblastoma Tumor Growth by the Anti-Cancer Agent OKN-007 in Orthotopic Mouse Xenografts

    Get PDF
    We thank the Peggy and Charles Stephenson Cancer Center at the University of Oklahoma, Oklahoma City, OK, for funding, who received an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20 GM103639 for the use of the Histology and Immunohistochemistry Core for providing immunohistochemistry and photographic services. This work was also supported by Oklahoma State University, Center of Veterinary Health Science (Support Grant AE-1-50060 to P.C.S.), the Musella Foundation (R.A.T.), and the Childhood Brain Tumor Foundation (R.A.T.).Pediatric glioblastomas (pGBM), although rare, are one of the leading causes of cancer-related deaths in children, with tumors essentially refractory to existing treatments. Here, we describe the use of conventional and advanced in vivo magnetic resonance imaging (MRI) techniques to assess a novel orthotopic xenograft pGBM mouse (IC-3752GBM patient-derived culture) model, and to monitor the effects of the anti-cancer agent OKN-007 as an inhibitor of pGBM tumor growth. Immunohistochemistry support data is also presented for cell proliferation and tumor growth signaling. OKN-007 was found to significantly decrease tumor volumes (p<0.05) and increase animal survival (p<0.05) in all OKN-007-treated mice compared to untreated animals. In a responsive cohort of treated animals, OKN-007 was able to significantly decrease tumor volumes (p<0.0001), increase survival (p<0.001), and increase diffusion (p<0.01) and perfusion rates (p<0.05). OKN-007 also significantly reduced lipid tumor metabolism in responsive animals (Lip1.3 and Lip0.9)-to-creatine ratio (p<0.05), as well as significantly decrease tumor cell proliferation (p<0.05) and microvessel density (p<0.05). Furthermore, in relationship to the PDGFRα pathway, OKN-007 was able to significantly decrease SULF2 (p<0.05) and PDGFR-α (platelet-derived growth factor receptor-α) (p<0.05) immunoexpression, and significantly increase decorin expression (p<0.05) in responsive mice. This study indicates that OKN-007 may be an effective anti-cancer agent for some patients with pGBMs by inhibiting cell proliferation and angiogenesis, possibly via the PDGFRα pathway, and could be considered as an additional therapy for pediatric brain tumor patients.Yeshttp://www.plosone.org/static/editorial#pee

    Transvenous Approach to Intracranial Arteriovenous Malformations: Challenging the Axioms of Arteriovenous Malformation Therapy?

    No full text
    A compartmental conceptualization of intracranial arteriovenous malformations (AVMs) allows recognition of feeding arteries, an intervening plexiform nidus, and draining veins. AVM therapy involves eliminating the nidus, which is the source of hemorrhage, without compromising normal arterial and venous drainage of the brain. Traditional methods of AVM therapy through microsurgery and endovascular embolization involve arterial devascularization, with preservation of AVM venous drainage, until the nidus is excluded. The transvenous approach in treating vascular malformations was popularized by successful treatment models for dural arteriovenous fistulas. More recently, high-flow intracranial AVMs are being managed with transvenous endovascular approaches, although this novel technique has its challenges and perils. We review the current literature on transvenous AVM therapy and highlight its role for AVM therapy in the present day. ABBREVIATIONS: AVM, arteriovenous malformations DAVF, dural arteriovenous fistula TRENSH, transvenous retrograde nidus sclerotherapy under controlled hypotension VOG, vein of Galen
    corecore