932 research outputs found

    Cloning quantum entanglement in arbitrary dimensions

    Full text link
    We have found a quantum cloning machine that optimally duplicates the entanglement of a pair of dd-dimensional quantum systems. It maximizes the entanglement of formation contained in the two copies of any maximally-entangled input state, while preserving the separability of unentangled input states. Moreover, it cannot increase the entanglement of formation of all isotropic states. For large dd, the entanglement of formation of each clone tends to one half the entanglement of the input state, which corresponds to a classical behavior. Finally, we investigate a local entanglement cloner, which yields entangled clones with one fourth the input entanglement in the large-dd limit.Comment: 6 pages, 3 figure

    Monte Carlo Simulation of Quantum Computation

    Get PDF
    The many-body dynamics of a quantum computer can be reduced to the time evolution of non-interacting quantum bits in auxiliary fields by use of the Hubbard-Stratonovich representation of two-bit quantum gates in terms of one-bit gates. This makes it possible to perform the stochastic simulation of a quantum algorithm, based on the Monte Carlo evaluation of an integral of dimension polynomial in the number of quantum bits. As an example, the simulation of the quantum circuit for the Fast Fourier Transform is discussed.Comment: 12 pages Latex, 2 Postscript figures, to appear in Proceedings of the IMACS (International Association for Mathematics and Computers in Simulation) Conference on Monte Carlo Methods, Brussels, April 9

    Optimal cloning of mixed Gaussian states

    Get PDF
    We construct the optimal 1 to 2 cloning transformation for the family of displaced thermal equilibrium states of a harmonic oscillator, with a fixed and known temperature. The transformation is Gaussian and it is optimal with respect to the figure of merit based on the joint output state and norm distance. The proof of the result is based on the equivalence between the optimal cloning problem and that of optimal amplification of Gaussian states which is then reduced to an optimization problem for diagonal states of a quantum oscillator. A key concept in finding the optimum is that of stochastic ordering which plays a similar role in the purely classical problem of Gaussian cloning. The result is then extended to the case of n to m cloning of mixed Gaussian states.Comment: 8 pages, 1 figure; proof of general form of covariant amplifiers adde

    Quantum conditional operator and a criterion for separability

    Get PDF
    We analyze the properties of the conditional amplitude operator, the quantum analog of the conditional probability which has been introduced in [quant-ph/9512022]. The spectrum of the conditional operator characterizing a quantum bipartite system is invariant under local unitary transformations and reflects its inseparability. More specifically, it is shown that the conditional amplitude operator of a separable state cannot have an eigenvalue exceeding 1, which results in a necessary condition for separability. This leads us to consider a related separability criterion based on the positive map Γ:ρ(Trρ)ρ\Gamma:\rho \to (Tr \rho) - \rho, where ρ\rho is an Hermitian operator. Any separable state is mapped by the tensor product of this map and the identity into a non-negative operator, which provides a simple necessary condition for separability. In the special case where one subsystem is a quantum bit, Γ\Gamma reduces to time-reversal, so that this separability condition is equivalent to partial transposition. It is therefore also sufficient for 2×22\times 2 and 2×32\times 3 systems. Finally, a simple connection between this map and complex conjugation in the "magic" basis is displayed.Comment: 19 pages, RevTe

    Quantum circuit implementation of the Hamiltonian versions of Grover's algorithm

    Full text link
    We analyze three different quantum search algorithms, the traditional Grover's algorithm, its continuous-time analogue by Hamiltonian evolution, and finally the quantum search by local adiabatic evolution. We show that they are closely related algorithms in the sense that they all perform a rotation, at a constant angular velocity, from a uniform superposition of all states to the solution state. This make it possible to implement the last two algorithms by Hamiltonian evolution on a conventional quantum circuit, while keeping the quadratic speedup of Grover's original algorithm.Comment: 5 pages, 3 figure

    What information theory can tell us about quantum reality

    Full text link
    An investigation of Einstein's ``physical'' reality and the concept of quantum reality in terms of information theory suggests a solution to quantum paradoxes such as the Einstein-Podolsky-Rosen (EPR) and the Schroedinger-cat paradoxes. Quantum reality, the picture based on unitarily evolving wavefunctions, is complete, but appears incomplete from the observer's point of view for fundamental reasons arising from the quantum information theory of measurement. Physical reality, the picture based on classically accessible observables is, in the worst case of EPR experiments, unrelated to the quantum reality it purports to reflect. Thus, quantum information theory implies that only correlations, not the correlata, are physically accessible: the mantra of the Ithaca interpretation of quantum mechanics.Comment: LaTeX with llncs.cls, 11 pages, 6 postscript figures, Proc. of 1st NASA Workshop on Quantum Computation and Quantum Communication (QCQC 98

    On the formation/dissolution of equilibrium droplets

    Full text link
    We consider liquid-vapor systems in finite volume VRdV\subset\R^d at parameter values corresponding to phase coexistence and study droplet formation due to a fixed excess δN\delta N of particles above the ambient gas density. We identify a dimensionless parameter Δ(δN)(d+1)/d/V\Delta\sim(\delta N)^{(d+1)/d}/V and a \textrm{universal} value \Deltac=\Deltac(d), and show that a droplet of the dense phase occurs whenever \Delta>\Deltac, while, for \Delta<\Deltac, the excess is entirely absorbed into the gaseous background. When the droplet first forms, it comprises a non-trivial, \textrm{universal} fraction of excess particles. Similar reasoning applies to generic two-phase systems at phase coexistence including solid/gas--where the ``droplet'' is crystalline--and polymorphic systems. A sketch of a rigorous proof for the 2D Ising lattice gas is presented; generalizations are discussed heuristically.Comment: An announcement of a forthcoming rigorous work on the 2D Ising model; to appear in Europhys. Let

    Hybrid Qubit gates in circuit QED: A scheme for quantum bit encoding and information processing

    Full text link
    Solid state superconducting devices coupled to coplanar transmission lines offer an exquisite architecture for quantum optical phenomena probing as well as for quantum computation implementation, being the object of intense theoretical and experimental investigation lately. In appropriate conditions the transmission line radiation modes can get strongly coupled to a superconducting device with only two levels -for that reason called artificial atom or qubit. Employing this system we propose a hybrid two-quantum bit gate encoding involving quantum electromagnetic field qubit states prepared in a coplanar transmission line capacitively coupled to a single charge qubit. Since dissipative effects are more drastic in the solid state qubit than in the field one, it can be employed for storage of information, whose efficiency against the action of an ohmic bath show that this encoding can be readily implemented with present day technology. We extend the investigation to generate entanglement between several solid state qubits and the field qubit through the action of external classical magnetic pulses.Comment: 9 pages, 10 figure

    Entanglement may enhance the channel capacity in arbitrary dimensions

    Full text link
    We consider explicitly two examples of d-dimensional quantum channels with correlated noise and show that, in agreement with previous results on Pauli qubit channels, there are situations where maximally entangled input states achieve higher values of the output mutual information than product states. We obtain a strong dependence of this effect on the nature of the noise correlations as well as on the parity of the space dimension, and conjecture that when entanglement gives an advantage in terms of mutual information, maximally entangled states achieve the channel capacity.Comment: 12 pages, 3 figure

    Information-theoretic interpretation of quantum error-correcting codes

    Get PDF
    Quantum error-correcting codes are analyzed from an information-theoretic perspective centered on quantum conditional and mutual entropies. This approach parallels the description of classical error correction in Shannon theory, while clarifying the differences between classical and quantum codes. More specifically, it is shown how quantum information theory accounts for the fact that "redundant" information can be distributed over quantum bits even though this does not violate the quantum "no-cloning" theorem. Such a remarkable feature, which has no counterpart for classical codes, is related to the property that the ternary mutual entropy vanishes for a tripartite system in a pure state. This information-theoretic description of quantum coding is used to derive the quantum analogue of the Singleton bound on the number of logical bits that can be preserved by a code of fixed length which can recover a given number of errors.Comment: 14 pages RevTeX, 8 Postscript figures. Added appendix. To appear in Phys. Rev.
    corecore