1,592 research outputs found
On a functional satisfying a weak Palais-Smale condition
In this paper we study a quasilinear elliptic problem whose functional
satisfies a weak version of the well known Palais-Smale condition. An existence
result is proved under general assumptions on the nonlinearities.Comment: 18 page
A double blind randomised controlled trial comparing standard dose of iron supplementation for pregnant women with two screen-and-treat approaches using hepcidin as a biomarker for ready and safe to receive iron.
BACKGROUND: Until recently, WHO recommended daily iron supplementation for all pregnant women (60 mg/d iron combined with 400ug/d folic acid) where anaemia rates exceeded 40 %. Recent studies indicate that this may pose a risk to pregnant women. Therefore, there is a need to explore screen-and-treat options to minimise iron exposure during pregnancy using an overall lower dosage of iron that would achieve equivalent results as being currently recommended by the WHO. However, there is a lack of agreement on how to best assess iron deficiency when infections are prevalent. Here, we test the use of hepcidin a peptide hormone and key regulator of iron metabolism, as a potential index for 'safe and ready to receive' iron. DESIGN/METHODS: This is a 3-arm randomised-controlled proof-of-concept trial. We will test the hypothesis that a screen-and-treat approach to iron supplementation using a pre-determined hepcidin cut-off value of <2.5 ng/ml will achieve similar efficacy in preventing iron deficiency and anaemia at a lower iron dose and hence will improve safety. A sample of 462 pregnant women in rural Gambia will be randomly assigned to receive: a) UNU/UNICEF/WHO international multiple micronutrient preparation (UNIMMAP) containing 60 mg/d iron (reference arm); b) UNIMMAP containing 60 mg/d iron but based on a weekly hepcidin screening indicating if iron can be given for the next 7 days or not; c) or UNIMMAP containing 30 mg/d iron as in (b) for 12 weeks in rural Gambia. The study will test if the screen-and-treat approach is non-inferior to the reference arm using the primary endpoint of haemoglobin levels at a non-inferiority margin of 0.5 g/dl. Secondary outcomes of adverse effects, compliance and the impact of iron supplementation on susceptibility to infections will also be assessed. DISCUSSION: This trial is expected to contribute towards minimising the exposure of pregnant women to iron that may not be needed and therefore potentially harmful. If the evidence in this study shows that the overall lower dosage of iron is non-inferior to 60 mg/day iron, this may help decrease side-effects, improve compliance and increase safety. The potential for the use of hepcidin for a simple point-of-care (PoC) diagnostic for when it is most safe and effective to give iron may improve maternal health outcomes. TRIAL REGISTRATION: ISRCTN21955180
Anemia Offers Stronger Protection Than Sickle Cell Trait Against the Erythrocytic Stage of Falciparum Malaria and This Protection Is Reversed by Iron Supplementation.
BACKGROUND: Iron deficiency causes long-term adverse consequences for children and is the most common nutritional deficiency worldwide. Observational studies suggest that iron deficiency anemia protects against Plasmodium falciparum malaria and several intervention trials have indicated that iron supplementation increases malaria risk through unknown mechanism(s). This poses a major challenge for health policy. We investigated how anemia inhibits blood stage malaria infection and how iron supplementation abrogates this protection. METHODS: This observational cohort study occurred in a malaria-endemic region where sickle-cell trait is also common. We studied fresh RBCs from anemic children (135 children; age 6-24months; hemoglobin <11g/dl) participating in an iron supplementation trial (ISRCTN registry, number ISRCTN07210906) in which they received iron (12mg/day) as part of a micronutrient powder for 84days. Children donated RBCs at baseline, Day 49, and Day 84 for use in flow cytometry-based in vitro growth and invasion assays with P. falciparum laboratory and field strains. In vitro parasite growth in subject RBCs was the primary endpoint. FINDINGS: Anemia substantially reduced the invasion and growth of both laboratory and field strains of P. falciparum in vitro (~10% growth reduction per standard deviation shift in hemoglobin). The population level impact against erythrocytic stage malaria was 15.9% from anemia compared to 3.5% for sickle-cell trait. Parasite growth was 2.4 fold higher after 49days of iron supplementation relative to baseline (p<0.001), paralleling increases in erythropoiesis. INTERPRETATION: These results confirm and quantify a plausible mechanism by which anemia protects African children against falciparum malaria, an effect that is substantially greater than the protection offered by sickle-cell trait. Iron supplementation completely reversed the observed protection and hence should be accompanied by malaria prophylaxis. Lower hemoglobin levels typically seen in populations of African descent may reflect past genetic selection by malaria. FUNDING: National Institute of Child Health and Development, Bill and Melinda Gates Foundation, UK Medical Research Council (MRC) and Department for International Development (DFID) under the MRC/DFID Concordat
Pathway Commons, a web resource for biological pathway data
Pathway Commons (http://www.pathwaycommons.org) is a collection of publicly available pathway data from multiple organisms. Pathway Commons provides a web-based interface that enables biologists to browse and search a comprehensive collection of pathways from multiple sources represented in a common language, a download site that provides integrated bulk sets of pathway information in standard or convenient formats and a web service that software developers can use to conveniently query and access all data. Database providers can share their pathway data via a common repository. Pathways include biochemical reactions, complex assembly, transport and catalysis events and physical interactions involving proteins, DNA, RNA, small molecules and complexes. Pathway Commons aims to collect and integrate all public pathway data available in standard formats. Pathway Commons currently contains data from nine databases with over 1400 pathways and 687 000 interactions and will be continually expanded and updated
Boceprevir is highly effective in treatment-experienced hepatitis C virus-positive genotype-1 menopausal women
AIM: To investigate the safety/efficacy of Boceprevirbased triple therapy in hepatitis C virus (HCV)-G1 menopausal women who were historic relapsers, partial-responders and null-responders. METHODS: In this single-assignment, unblinded study, we treated fifty-six menopausal women with HCV-G1, 46% F3-F4, and previous PEG-α/RBV failure (7% null, 41% non-responder, and 52% relapser) with 4 wk lead-in with PEG-IFNα2b/RBV followed by PEGIFNα2b/RBV+Boceprevir for 32 wk, with an additional 12 wk of PEG-IFN-α-2b/RBV if patients were HCV-RNA-positive by week 8. In previous null-responders, 44 wk of triple therapy was used. The primary objective of retreatment was to verify whether a sustained virological response (SVR) (HCV RNA undetectable at 24 wk of follow-up) rate of at least 20% could be obtained. The secondary objective was the evaluation of the percent of patients with negative HCV RNA at week 4 (RVR), 8 (RVR BOC), 12 (EVR), or at the end-of-treatment (ETR) that reached SVR. To assess the relationship between SVR and clinical and biochemical parameters, multiple logistic regression analysis was used. RESULTS: After lead-in, only two patients had RVR; HCV-RNA was unchanged in all but 62% who had ≤ 1 logio decrease. After Boceprevir, HCV RNA became undetectable at week 8 in 32/56 (57.1%) and at week 12 in 41/56 (73.2%). Of these, 53.8% and 52.0%, respectively, achieved SVR. Overall, SVR was obtained in 25/56 (44.6%). SVR was achieved in 55% previous relapsers vs. 41% non-responders (Ρ = 0.250), in 44% F0-F2 vs 54% F3-F4 (Ρ = 0.488), and in 11/19 (57.9%) of patients with cirrhosis. At univariate analysis for baseline predictors of SVR, only previous response to antiviral therapy (OR = 2.662, 95%CI: 0.957-6.881, Ρ= 0.043), was related with SVR. When considering "on treatment" factors, 1 log10 HCV RNA decline at week 4 (3.733, 95%CI: 1.676-12.658, Ρ= 0.034) and achievement of RVR BOC (7.347, 95%CI: 2.156-25.035, Ρ= 0.001) were significantly related with the SVR, al-though RVR BOC only (6.794, 95%CI: 1.596-21.644, Ρ = 0.010) maintained significance at multivariate logistic regression analysis. Anemia and neutropenia were managed with Erythropoietin and Filgrastim supplementation, respectively. Only six patients discontinued therapy. CONCLUSION: Boceprevir obtained high SVR response independent of previous response, RVR or baseline fibrosis or cirrhosis. RVR BOC was the only independent predictor of SVR
The cBio cancer Genomics portal: An open platform for exploring multidimensional cancer genomics data
Cataloged from PDF version of article.The cBio Cancer Genomics Portal (http://cbioportal.org) is an open-access resource for interactive exploration of multidimensional cancer genomics data sets, currently providing access to data from more than 5,000 tumor samples from 20 cancer studies. The cBio Cancer Genomics Portal significantly lowers the barriers between complex genomic data and cancer researchers who want rapid, intuitive, and high-quality access to molecular profiles and clinical attributes from large-scale cancer genomics projects and empowers researchers to translate these rich data sets into biologic insights and clinical applications. © 2012 American Association for Cancer Research
RASSF1A–LATS1 signalling stabilizes replication forks by restricting CDK2-mediated phosphorylation of BRCA2
Genomic instability is a key hallmark of cancer leading to tumour heterogeneity and therapeutic resistance. BRCA2 has a fundamental role in error-free DNA repair but also sustains genome integrity by promoting RAD51 nucleofilament formation at stalled replication forks. CDK2 phosphorylates BRCA2 (pS3291-BRCA2) to limit stabilizing contacts with polymerized RAD51; however, how replication stress modulates CDK2 activity and whether loss of pS3291-BRCA2 regulation results in genomic instability of tumours are not known. Here we demonstrate that the Hippo pathway kinase LATS1 interacts with CDK2 in response to genotoxic stress to constrain pS3291-BRCA2 and support RAD51 nucleofilaments, thereby maintaining genomic fidelity during replication stalling. We also show that LATS1 forms part of an ATR-mediated response to replication stress that requires the tumour suppressor RASSF1A. Importantly, perturbation of the ATR–RASSF1A–LATS1 signalling axis leads to genomic defects associated with loss of BRCA2 function and contributes to genomic instability and ‘BRCA-ness’ in lung cancers
Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma.
Cross-talk among oncogenic signaling and metabolic pathways may create opportunities for new therapeutic strategies in cancer. Here we show that although acute inhibition of EGFR-driven glucose metabolism induces only minimal cell death, it lowers the apoptotic threshold in a subset of patient-derived glioblastoma (GBM) cells. Mechanistic studies revealed that after attenuated glucose consumption, Bcl-xL blocks cytoplasmic p53 from triggering intrinsic apoptosis. Consequently, targeting of EGFR-driven glucose metabolism in combination with pharmacological stabilization of p53 with the brain-penetrant small molecule idasanutlin resulted in synthetic lethality in orthotopic glioblastoma xenograft models. Notably, neither the degree of EGFR-signaling inhibition nor genetic analysis of EGFR was sufficient to predict sensitivity to this therapeutic combination. However, detection of rapid inhibitory effects on [18F]fluorodeoxyglucose uptake, assessed through noninvasive positron emission tomography, was an effective predictive biomarker of response in vivo. Together, these studies identify a crucial link among oncogene signaling, glucose metabolism, and cytoplasmic p53, which may potentially be exploited for combination therapy in GBM and possibly other malignancies
On dynamic network entropy in cancer
The cellular phenotype is described by a complex network of molecular
interactions. Elucidating network properties that distinguish disease from the
healthy cellular state is therefore of critical importance for gaining
systems-level insights into disease mechanisms and ultimately for developing
improved therapies. By integrating gene expression data with a protein
interaction network to induce a stochastic dynamics on the network, we here
demonstrate that cancer cells are characterised by an increase in the dynamic
network entropy, compared to cells of normal physiology. Using a fundamental
relation between the macroscopic resilience of a dynamical system and the
uncertainty (entropy) in the underlying microscopic processes, we argue that
cancer cells will be more robust to random gene perturbations. In addition, we
formally demonstrate that gene expression differences between normal and cancer
tissue are anticorrelated with local dynamic entropy changes, thus providing a
systemic link between gene expression changes at the nodes and their local
network dynamics. In particular, we also find that genes which drive
cell-proliferation in cancer cells and which often encode oncogenes are
associated with reductions in the dynamic network entropy. In summary, our
results support the view that the observed increased robustness of cancer cells
to perturbation and therapy may be due to an increase in the dynamic network
entropy that allows cells to adapt to the new cellular stresses. Conversely,
genes that exhibit local flux entropy decreases in cancer may render cancer
cells more susceptible to targeted intervention and may therefore represent
promising drug targets.Comment: 10 pages, 3 figures, 4 tables. Submitte
- …