567 research outputs found
Multi-Band Planar Antennas: a Comparative Study
The classical patch antenna is a basic building block of compared antennas. The multi-band behavior is achieved by etching perturbation slots to the patch, which influence resonant current distributions. The antennas are designed for GSM bands (900 MHz, 1 800 MHz), and for the Bluetooth band (2 400 MHz)
Coronal ion-cyclotron beam instabilities within the multi-fluid description
Spectroscopic observations and theoretical models suggest resonant
wave-particle interactions, involving high-frequency ion-cyclotron waves, as
the principal mechanism for heating and accelerating ions in the open coronal
holes. However, the mechanism responsible for the generation of the
ion-cyclotron waves remains unclear. One possible scenario is that ion beams
originating from small-scale reconnection events can drive micro-instabilities
that constitute a possible source for the excitation of ion-cyclotron waves. In
order to study ion beam-driven electromagnetic instabilities, the multi-fluid
model in the low-beta coronal plasma is used. While neglecting the electron
inertia this model allows one to take into account ion-cyclotron wave effects
that are absent from the one-fluid MHD model. Realistic models of density and
temperature as well as a 2-D analytical magnetic field model are used to define
the background plasma in the open-field funnel region of a polar coronal hole.
Considering the WKB approximation, a Fourier plane-wave linear mode analysis is
employed in order to derive the dispersion relation. Ray-tracing theory is used
to compute the ray path of the unstable wave as well as the evolution of the
growth rate of the wave while propagating in the coronal funnel. We demonstrate
that, in typical coronal holes conditions and assuming realistic values of the
beam velocity, the free energy provided by the ion beam propagating parallel
the ambient field can drive micro-instabilities through resonant ion-cyclotron
excitation.Comment: 8 pages, 6 figures, submitted to A&
Natural and projectively equivariant quantizations by means of Cartan Connections
The existence of a natural and projectively equivariant quantization in the
sense of Lecomte [20] was proved recently by M. Bordemann [4], using the
framework of Thomas-Whitehead connections. We give a new proof of existence
using the notion of Cartan projective connections and we obtain an explicit
formula in terms of these connections. Our method yields the existence of a
projectively equivariant quantization if and only if an \sl(m+1,\R)-equivariant
quantization exists in the flat situation in the sense of [18], thus solving
one of the problems left open by M. Bordemann.Comment: 13 page
Nonuniform Self-Organized Dynamical States in Superconductors with Periodic Pinning
We consider magnetic flux moving in superconductors with periodic pinning
arrays. We show that sample heating by moving vortices produces negative
differential resistivity (NDR) of both N and S type (i.e., N- and S-shaped) in
the voltage-current characteristic (VI curve). The uniform flux flow state is
unstable in the NDR region of the VI curve. Domain structures appear during the
NDR part of the VI curve of an N type, while a filamentary instability is
observed for the NDR of an S type. The simultaneous existence of the NDR of
both types gives rise to the appearance of striking self-organized (both
stationary and non-stationary) two-dimensional dynamical structures.Comment: 4 pages, 2 figure
Speckle activity images based on the spatial variance of the phase
We propose the display of the local spatial variance of the temporal variations of the phase as an activity descriptor in dynamic speckle images. The spatial autocorrelation of the speckle intensity is calculated in sliding windows, and an estimation of the variance of the phase variations in each region of the sample is determined. The activity images obtained in this way depict some interesting features and in some cases they could be related to physical magnitudes in the samples. A simulation is presented, and examples corresponding to usual study cases are also shown, namely, fruit bruising and paint drying
Speckle activity images based on the spatial variance of the phase
We propose the display of the local spatial variance of the temporal variations of the phase as an activity descriptor in dynamic speckle images. The spatial autocorrelation of the speckle intensity is calculated in sliding windows, and an estimation of the variance of the phase variations in each region of the sample is determined. The activity images obtained in this way depict some interesting features and in some cases they could be related to physical magnitudes in the samples. A simulation is presented, and examples corresponding to usual study cases are also shown, namely, fruit bruising and paint drying.Facultad de Ingeniería (FI)Centro de Investigaciones Ópticas (CIOp
Speckle activity images based on the spatial variance of the phase
We propose the display of the local spatial variance of the temporal variations of the phase as an activity descriptor in dynamic speckle images. The spatial autocorrelation of the speckle intensity is calculated in sliding windows, and an estimation of the variance of the phase variations in each region of the sample is determined. The activity images obtained in this way depict some interesting features and in some cases they could be related to physical magnitudes in the samples. A simulation is presented, and examples corresponding to usual study cases are also shown, namely, fruit bruising and paint drying.Facultad de Ingeniería (FI)Centro de Investigaciones Ópticas (CIOp
Freeze-out configuration properties in the 197Au + 197Au reaction at 23 AMeV
Data from the experiment on the 197Au + 197Au reaction at 23 AMeV are
analyzed with an aim to find signatures of exotic nuclear configurations such
as toroid-shaped objects. The experimental data are compared with predictions
of the ETNA code dedicated to look for such configurations and with the QMD
model. A novel criterion of selecting events possibly resulting from the
formation of exotic freeze-out configurations, "the efficiency factor", is
tested. Comparison between experimental data and model predictions may indicate
for the formation of flat/toroidal nuclear systems
Signals of dynamical and statistical process from IMF-IMF correlation function
In this paper we briefly discuss about a novel application of the IMFIMF correlation function to the physical case of binary massive projectile-like (PLF) splitting for dynamical and statistical breakup/fission in heavy ion collisions at Fermi energy. Theoretical simulations are also shown for comparisons with the data. These preliminary results have been obtained for the reverse kinematics reaction 124Sn+64Ni at 35 AMeV that was studied using the forward part of CHIMERA detector. In that reaction a strong competition between a dynamical and a statistical components and its evolution with the charge asymmetry of the binary break up was already shown. In this work we show that the IMF-IMF correlation function can be used to pin down the timescale of the fragments production in binary fission-like phenomena. We also made simulations with the CoMDII model in order to compare to the experimental IMF-IMF correlation function. In future we plan to extend these studies to different reaction mechanisms and nuclear systems and to compare with different theoretical transport simulations
- …