103 research outputs found
Eccentric binary black-hole mergers: The transition from inspiral to plunge in general relativity
We study the transition from inspiral to plunge in general relativity by
computing gravitational waveforms of non-spinning, equal-mass black-hole
binaries. We consider three sequences of simulations, starting with a
quasi-circular inspiral completing 1.5, 2.3 and 9.6 orbits, respectively, prior
to coalescence of the holes. For each sequence, the binding energy of the
system is kept constant and the orbital angular momentum is progressively
reduced, producing orbits of increasing eccentricity and eventually a head-on
collision. We analyze in detail the radiation of energy and angular momentum in
gravitational waves, the contribution of different multipolar components and
the final spin of the remnant. We find that the motion transitions from
inspiral to plunge when the orbital angular momentum L=L_crit is about 0.8M^2.
For L<L_crit the radiated energy drops very rapidly. Orbits with L of about
L_crit produce our largest dimensionless Kerr parameter for the remnant,
j=J/M^2=0.724. Generalizing a model recently proposed by Buonanno, Kidder and
Lehner to eccentric binaries, we conjecture that (1) j=0.724 is the maximal
Kerr parameter that can be obtained by any merger of non-spinning holes, and
(2) no binary merger (even if the binary members are extremal Kerr black holes
with spins aligned to the orbital angular momentum, and the inspiral is highly
eccentric) can violate the cosmic censorship conjecture.Comment: Added sequence of long inspirals to the study. To match published
versio
Editorial: Cardiac optogenetics: Using light to observe and excite the heart
This is the editorial to the special edition “Cardiac optogenetics: using light to observe and excite the heart
Covariant quantization of membrane dynamics
A Lorentz covariant quantization of membrane dynamics is defined, which also
leaves unbroken the full three dimensional diffeomorphism invariance of the
membrane. Among the applications studied are the reduction to string theory,
which may be understood in terms of the phase space and constraints, and the
interpretation of physical,zero-energy states. A matrix regularization is
defined as in the light cone gauged fixed theory but there are difficulties
implementing all the gauge symmetries. The problem involves the
non-area-preserving diffeomorphisms which are realized non-linearly in the
classical theory. In the quantum theory they do not seem to have a consistent
implementation for finite N. Finally, an approach to a genuinely background
independent formulation of matrix dynamics is briefly described.Comment: Latex, 21 pages, no figure
Finite, diffeomorphism invariant observables in quantum gravity
Two sets of spatially diffeomorphism invariant operators are constructed in
the loop representation formulation of quantum gravity. This is done by
coupling general relativity to an anti- symmetric tensor gauge field and using
that field to pick out sets of surfaces, with boundaries, in the spatial three
manifold. The two sets of observables then measure the areas of these surfaces
and the Wilson loops for the self-dual connection around their boundaries. The
operators that represent these observables are finite and background
independent when constructed through a proper regularization procedure.
Furthermore, the spectra of the area operators are discrete so that the
possible values that one can obtain by a measurement of the area of a physical
surface in quantum gravity are valued in a discrete set that includes integral
multiples of half the Planck area. These results make possible the construction
of a correspondence between any three geometry whose curvature is small in
Planck units and a diffeomorphism invariant state of the gravitational and
matter fields. This correspondence relies on the approximation of the classical
geometry by a piecewise flat Regge manifold, which is then put in
correspondence with a diffeomorphism invariant state of the gravity-matter
system in which the matter fields specify the faces of the triangulation and
the gravitational field is in an eigenstate of the operators that measure their
areas.Comment: Latex, no figures, 30 pages, SU-GP-93/1-
Spin Networks and Quantum Gravity
We introduce a new basis on the state space of non-perturbative quantum
gravity. The states of this basis are linearly independent, are well defined in
both the loop representation and the connection representation, and are labeled
by a generalization of Penrose's spin netoworks. The new basis fully reduces
the spinor identities (SU(2) Mandelstam identities) and simplifies calculations
in non-perturbative quantum gravity. In particular, it allows a simple
expression for the exact solutions of the Hamiltonian constraint
(Wheeler-DeWitt equation) that have been discovered in the loop representation.
Since the states in this basis diagnolize operators that represent the three
geometry of space, such as the area and volumes of arbitrary surfaces and
regions, these states provide a discrete picture of quantum geometry at the
Planck scale.Comment: 42 page
Accurate evolutions of inspiralling neutron-star binaries: assessment of the truncation error
We have recently presented an investigation in full general relativity of the
dynamics and gravitational-wave emission from binary neutron stars which
inspiral and merge, producing a black hole surrounded by a torus (see
arXiv:0804.0594). We here discuss in more detail the convergence properties of
the results presented in arXiv:0804.0594 and, in particular, the deterioration
of the convergence rate at the merger and during the survival of the merged
object, when strong shocks are formed and turbulence develops. We also show
that physically reasonable and numerically convergent results obtained at
low-resolution suffer however from large truncation errors and hence are of
little physical use. We summarize our findings in an "error budget", which
includes the different sources of possible inaccuracies we have investigated
and provides a first quantitative assessment of the precision in the modelling
of compact fluid binaries.Comment: 13 pages, 5 figures. Minor changes to match published version. Added
figure 5 right pane
Recommended from our members
Preface
Preface - The second International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Prague, Czech Republic, from Sunday 1 September to Thursday 5 September 2013
A fast stroboscopic spectral method for rotating systems in numerical relativity
We present a numerical technique for solving evolution equations, as the wave
equation, in the description of rotating astrophysical compact objects in
comoving coordinates, which avoids the problems associated with the light
cylinder. The technique implements a fast spectral matching between two domains
in relative rotation: an inner spherical domain, comoving with the sources and
lying strictly inside the light cylinder, and an outer inertial spherical
shell. Even though the emphasis is placed on spectral techniques, the matching
is independent of the specific manner in which equations are solved inside each
domain, and can be adapted to different schemes. We illustrate the strategy
with some simple but representative examples.Comment: 16 pages, 15 figure
- …