43 research outputs found

    Alveolar macrophages regulate neutrophil recruitment in endotoxin-induced lung injury

    Get PDF
    BACKGROUND: Alveolar macrophages play an important role during the development of acute inflammatory lung injury. In the present study, in vivo alveolar macrophage depletion was performed by intratracheal application of dichloromethylene diphosphonate-liposomes in order to study the role of these effector cells in the early endotoxin-induced lung injury. METHODS: Lipopolysaccharide was applied intratracheally and the inflammatory reaction was assessed 4 hours later. Neutrophil accumulation and expression of inflammatory mediators were determined. To further analyze in vivo observations, in vitro experiments with alveolar epithelial cells and alveolar macrophages were performed. RESULTS: A 320% increase of polymorphonuclear leukocytes in bronchoalveolar lavage fluid was observed in macrophage-depleted compared to macrophage-competent lipopolysaccharide-animals. This neutrophil recruitment was also confirmed in the interstitial space. Monocyte chemoattractant protein-1 concentration in bronchoalveolar lavage fluid was significantly increased in the absence of alveolar macrophages. This phenomenon was underlined by in vitro experiments with alveolar epithelial cells and alveolar macrophages. Neutralizing monocyte chemoattractant protein-1 in the airways diminished neutrophil accumulation. CONCLUSION: These data suggest that alveolar macorphages play an important role in early endotoxin-induced lung injury. They prevent neutrophil influx by controlling monocyte chemoattractant protein-1 production through alveolar epithelial cells. Alveolar macrophages might therefore possess robust anti-inflammatory effects

    Alveolar macrophages are required for protective pulmonary defenses in murine Klebsiella pneumonia: elimination of alveolar macrophages increases neutrophil recruitment but decreases bacterial clearance and survival.

    No full text
    To study the in vivo role of alveolar macrophages (AM) in gram-negative bacterial pneumonia in mice, AM were eliminated by the intratracheal (i.t.) administration of dichloromethylene diphosphonate encapsulated liposomes. Subsequently, the AM-depleted mice were infected i.t. with 100 CFU of Klebsiella pneumoniae, and the effects of AM depletion on survival, bacterial clearance, and neutrophil (polymorphonuclear leukocyte [PMN]) recruitment were assessed. It was shown that depletion of AM decreases survival dramatically, with 100% lethality at day 3 postinfection, versus 100% long-term survival in the control group. This increased mortality was accompanied by 20- to 27- and 3- to 10-fold increases in the number of K. pneumoniae CFU in lung and plasma, respectively, compared to those in nondepleted animals. This decreased bacterial clearance was not due to an impaired PMN recruitment; on the contrary, the K. pneumoniae-induced PMN recruitment in AM-depleted lungs was sevenfold greater 48 h postinfection than that in control infected lungs. Together with an increased PMN infiltration, 3- and 10-fold increases in lung homogenate tumor necrosis factor alpha (TNF-alpha) and macrophage inflammatory protein 2 (MIP-2) levels, respectively, were measured. Neutralization of TNF-alpha or MIP-2, 2 h before infection, reduced the numbers of infiltrating PMN by 41.6 and 64.2%, respectively, indicating that these cytokines mediate PMN influx in infected lungs, rather then just being produced by the recruited PMN themselves. Our studies demonstrate, for the first time, the relative importance of the AM in the containment and clearance of bacteria in the setting of Klebsiella pneumonia
    corecore