853 research outputs found

    On the Corner Elements of the CKM and PMNS Matrices

    Get PDF
    Recent experiments show that the top-right corner element (Ue3U_{e3}) of the PMNS, like that (VubV_{ub}) of the CKM, matrix is small but nonzero, and suggest further via unitarity that it is smaller than the bottom-left corner element (Uτ1U_{\tau 1}), again as in the CKM case (Vub<VtdV_{ub} < V_{td}). An attempt in explaining these facts would seem an excellent test for any model of the mixing phenomenon. Here, it is shown that if to the assumption of a universal rank-one mass matrix, long favoured by phenomenologists, one adds that this matrix rotates with scale, then it follows that (A) by inputting the mass ratios mc/mt,ms/mb,mμ/mτm_c/m_t, m_s/m_b, m_\mu/m_\tau, and m2/m3m_2/m_3, (i) the corner elements are small but nonzero, (ii) Vub<VtdV_{ub} < V_{td}, Ue3<Uτ1U_{e 3} < U_{\tau 1}, (iii) estimates result for the ratios Vub/VtdV_{ub}/V_{td} and Ue3/Uτ1U_{e 3}/U_{\tau 1}, and (B) by inputting further the experimental values of Vus,VtbV_{us}, V_{tb} and Ue2,Uμ3U_{e2},U_{\mu 3}, (iv) estimates result for the values of the corner elements themselves. All the inequalities and estimates obtained are consistent with present data to within expectation for the approximations made.Comment: 9 pages, 2 figures, updated with new experimental data and more detail

    N-String Vertices in String Field Theory

    Get PDF
    We give the general form of the vertex corresponding to the interaction of an arbitrary number of strings. The technique employed relies on the ``comma" representation of String Field Theory where string fields and interactions are represented as matrices and operations between them such as multiplication and trace. The general formulation presented here shows that the interaction vertex of N strings, for any arbitrary N, is given as a function of particular combinations of matrices corresponding to the change of representation between the full string and the half string degrees of freedom.Comment: 22 pages, A4-Latex (latex twice), FTUV IFI

    Usefulness of routine preoperative testing in a developing country: a prospective study

    Get PDF
    Introduction: The assessment of anesthetic risks is an essential component of preoperative evaluation. In developing world, preanesthesia evaluation may be challenging because patient's medical history and records are scare, and language barrier limits physical examination. Our objective was to evaluate the impact of routine preoperative testing in a low-resources setting. Methods: Prospective observational study performed in a French forward surgical unit in Abidjan, Ivory Coast. 201 patients who were scheduled for non urgent surgery were screened with routine laboratory exams during preoperative evaluation. Changes in surgery were assessed (delayed or scheduled). Results: Abnormal hemoglobin findings were reported in 35% of patients, abnormal WBC count in 11,1% of patients, abnormal platelets in 15,3% of patients. Positive HIV results were found in 8,3% of cases. Routine tests represented 43,6% of changes causes. Conclusion: Our study showed that in a developing country, routine preoperative tests showed abnormal results up to 35% of cases, and represented 43,6% of delayed surgery causes. The rate of tests leading to management changes varied widely, from 0% to 8,3%. These results suggested that selected tests would be useful to diagnose diseases that required treatment before non urgent surgery. However, larger studies are needeed to evaluate the cost/benefit ratio and the clinical impact of such a strategy

    Impact of water saturation on seismoelectric transfer functions: a laboratory study of coseismic phenomenon

    Get PDF
    Seismic waves propagating in a porous medium, under favourable conditions, generate measurable electromagnetic fields due to electrokinetic effects. It has been proposed, following experimental and numerical studies, that these so-called ‘seismoelectromagnetic' couplings depend on pore fluid properties. The theoretical frame describing these phenomena are based on the original Biot's theory, assuming that pores are fluid-filled. We study here the impact of a partially saturated medium on amplitudes of those seismoelectric couplings by comparing experimental data to an effective fluid model. We have built a 1-m-length-scale experiment designed for imbibition and drainage of an homogeneous silica sand; the experimental set-up includes a seismic source, accelerometers, electric dipoles and capacitance probes in order to monitor seismic and seismoelectric fields during water saturation. Apparent velocities and frequency spectra (in the kiloHertz range) are derived from seismic and electrical measurements during experiments in varying saturation conditions. Amplitudes of seismic and seismoelectric waves and their ratios (i.e. transfer functions) are discussed using a spectral analysis performed by continuous wavelet transform. The experiments reveal that amplitude ratios of seismic to coseismic electric signals remain rather constant as a function of the water saturation in the Sw=[0.2-0.9] range, consistently with theoretically predicted transfer function

    A Comprehensive Mechanism Reproducing the Mass and Mixing Parameters of Quarks and Leptons

    Get PDF
    It is shown that if, from the starting point of a universal rank-one mass matrix long favoured by phenomenologists, one adds the assumption that it rotates (changes its orientation in generation space) with changing scale, one can reproduce, in terms of only 6 real parameters, all the 16 mass ratios and mixing parameters of quarks and leptons. Of these 16 quantities so reproduced, 10 for which data exist for direct comparison (i.e. the CKM elements including the CP-violating phase, the angles θ12,θ13,θ23\theta_{12}, \theta_{13}, \theta_{23} in ν\nu-oscillation, and the masses mc,mμ,mem_c, m_\mu, m_e) agree well with experiment, mostly to within experimental errors; 4 others (ms,mu,md,mν2m_s, m_u, m_d, m_{\nu_2}), the experimental values for which can only be inferred, agree reasonably well; while 2 others (mν1,δCPm_{\nu_1}, \delta_{CP} for leptons), not yet measured experimentally, remain as predictions. In addition, one gets as bonuses, estimates for (i) the right-handed neutrino mass mνRm_{\nu_R} and (ii) the strong CP angle θ\theta inherent in QCD. One notes in particular that the output value for sin22θ13\sin^2 2 \theta_{13} from the fit agrees very well with recent experiments. By inputting the current experimental value with its error, one obtains further from the fit 2 new testable constraints: (i) that θ23\theta_{23} must depart from its "maximal" value: sin22θ230.935±0.021\sin^2 2 \theta_{23} \sim 0.935 \pm 0.021, (ii) that the CP-violating (Dirac) phase in the PMNS would be smaller than in the CKM matrix: of order only sinδCP0.31|\sin \delta_{CP}| \leq 0.31 if not vanishing altogether.Comment: 37 pages, 1 figur

    Computing in String Field Theory Using the Moyal Star Product

    Full text link
    Using the Moyal star product, we define open bosonic string field theory carefully, with a cutoff, for any number of string oscillators and any oscillator frequencies. Through detailed computations, such as Neumann coefficients for all string vertices, we show that the Moyal star product is all that is needed to give a precise definition of string field theory. The formulation of the theory as well as the computation techniques are considerably simpler in the Moyal formulation. After identifying a monoid algebra as a fundamental mathematical structure in string field theory, we use it as a tool to compute with ease the field configurations for wedge, sliver, and generalized projectors, as well as all the string interaction vertices for perturbative as well as monoid-type nonperturbative states. Finally, in the context of VSFT we analyze the small fluctuations around any D-brane vacuum. We show quite generally that to obtain nontrivial mass and coupling, as well as a closed strings, there must be an associativity anomaly. We identify the detailed source of the anomaly, but leave its study for future work.Comment: 77 pages, LaTeX. v3: corrections of signs or factors (for a list of corrections see beginning of source file

    Measuring effective electroweak couplings in single top production at the LHC

    Full text link
    We study the mechanism of single top production at the LHC in the framework of an effective electroweak Lagrangian, analyzing the sensitivity of different observables to the magnitude of the effective couplings that parametrize new physics beyond the Standard Model. The observables relevant to the distinction between left and right effective couplings involve in practice the measurement of the spin of the top and this can be achieved only indirectly by measuring the angular distribution of its decay products. We show that the presence of effective right-handed couplings implies that the top is not in a pure spin state. A unique spin basis is singled out which allows one to connect top decay products angular distribution with the polarized top differential cross section. We present a complete analytical expression of the differential polarized cross section of the relevant perturbative subprocess including general effective couplings. The mass of the bottom quark, which actually turns out to be more relevant than naively expected, is retained. Finally we analyze different aspects the total cross section relevant to the measurement of new physics through the effective couplings. The above analysis also applies to anti-top production in a straightforward way.Comment: 38 pages, 17 figure

    Neural Networks for Information Retrieval

    Get PDF
    Machine learning plays a role in many aspects of modern IR systems, and deep learning is applied in all of them. The fast pace of modern-day research has given rise to many different approaches for many different IR problems. The amount of information available can be overwhelming both for junior students and for experienced researchers looking for new research topics and directions. Additionally, it is interesting to see what key insights into IR problems the new technologies are able to give us. The aim of this full-day tutorial is to give a clear overview of current tried-and-trusted neural methods in IR and how they benefit IR research. It covers key architectures, as well as the most promising future directions.Comment: Overview of full-day tutorial at SIGIR 201
    corecore