20,876 research outputs found
Contribution of two diagnosis tools to support interface situation during production launch
Organised by: Cranfield UniversityFirms are urged to constantly introduce new products. Hence, the New Product Development process should be mastered, especially its final phase, the production launch. This paper addresses the critical issue of the information exchange during production launch. Two diagnosis tools considering production launch as a key interface are presented. They permit to examine the information flows, to highlight their weaknesses and hence to find solutions for further improvements. This paper also presents the results of a case study where the diagnosis tools were implemented during a switchgear development project.Mori Seiki – The Machine Tool Compan
The Impact of Prescribed Fire on Moth Assemblages in the Boston Mountains and Ozark Highlands, in Arkansas
In addition to the impacts of prescribed fires on forest vegetation, this ecosystem process also has dramatic impacts on associated insect assemblages. For herbivorous, terrestrial insects, fire predictably results in a cycle of initial insect population reduction followed by recovery and growth, in which these insect populations exceed pre-fire abundances. We sought to examine if fire-induced disturbance cycles make prescribed burned areas more or less suitable specifically for moths (order Lepidoptera), which is a major food source for, among others, multiple bat species. We surveyed moth assemblages at 20 burned and 20 unburned sites in the Boston Mountain and Ozark Highland ecoregions of Arkansas, to determine if biomass or abundance of moths differed between areas that had been burned in the past 10 years, and those areas that had never been burned. Samples were collected early (April to July) and late (August to November) in the growing season of 2017 (hereafter early season and late season, respectively). We compared biomass and abundance of all moths, and of five representative moth species, between burned and unburned sites. The five moth species were chosen and considered to be representative due to their high relative abundance, and ease of identification. The five chosen moth species included the banded tussock moth (Halysidota tessellaris), white-dotted prominent moth (Nadata gibbosa), ailanthus moth (Atteva aurea), grape leaffolder (Desmia funeralis), and painted lichen moth (Hypoprepia fucosa). Results from paired t-tests showed no significant difference in total biomass, or abundance of representative species between burned and unburned sites. However, generalized linear regression models showed significantly higher abundance of moths in areas with high basal area that had been previously burned (β = -0.038 ± 0.004 SE,
Draft Genome Sequence of the Grapevine Dieback Fungus Eutypa lata UCR-EL1.
The vascular pathogen Eutypa lata, which causes Eutypa dieback in grapevines, is a major threat to grape production worldwide. Here, we present the first draft genome sequence of E. lata (UCR-EL1). The computational prediction and annotation of the protein-coding genes of UCR-EL1 provide an initial inventory of its potential virulence factors
Exploiting Prior Knowledge in Compressed Sensing Wireless ECG Systems
Recent results in telecardiology show that compressed sensing (CS) is a
promising tool to lower energy consumption in wireless body area networks for
electrocardiogram (ECG) monitoring. However, the performance of current
CS-based algorithms, in terms of compression rate and reconstruction quality of
the ECG, still falls short of the performance attained by state-of-the-art
wavelet based algorithms. In this paper, we propose to exploit the structure of
the wavelet representation of the ECG signal to boost the performance of
CS-based methods for compression and reconstruction of ECG signals. More
precisely, we incorporate prior information about the wavelet dependencies
across scales into the reconstruction algorithms and exploit the high fraction
of common support of the wavelet coefficients of consecutive ECG segments.
Experimental results utilizing the MIT-BIH Arrhythmia Database show that
significant performance gains, in terms of compression rate and reconstruction
quality, can be obtained by the proposed algorithms compared to current
CS-based methods.Comment: Accepted for publication at IEEE Journal of Biomedical and Health
Informatic
A numerical flow simulation of a mixed flow pump
Mixed flow pumps are primarily axial flow pumps, but they impart some degree of radial and swirling momentum to the pump fluid as it passes through the rotor section. They are popular for pumping water in tight spaces, so are used for residential wells, municipal water works, industrial applications, and even for powering small water craft
A numerical and experimental analysis of flow in a centrifugal pump
Computational fluid dynamics (CFD) analysis has been used to solve the unsteady three-dimensional viscous flow in the entire impeller and volute casing of a centrifugal pump. The results of the calculations are used to predict the impeller/volute interaction and to obtain the unsteady pressure distribution in the impeller and volute casing. The calculated unsteady pressure distribution is used to determine the unsteady blade loading. The calculations at the design point and at two off-design points are carried out with a multiple frame of reference and a sliding mesh technique is applied to consider the impeller/volute interaction
Ironwork of Teixois-Taramundi (Asturias) Spain
This paper describes an old ironwork placed in a Spanish village. All parts of it are studied, specially the Air supply and the Hydraulic wheel. The minimum area in the water trump for a correct air flow is calculated. On the other hand, also the power supply by the hydraulic wheel, in normal conditions, to move the hammer with a required frequency is calculated
- …