10 research outputs found

    Differential Regulation of PDE5 Expression in Left and Right Ventricles of Feline Hypertrophy Models

    Get PDF
    Though long known to affect smooth muscle biology, recent studies indicate that phosphodiesterase 5 (PDE5) is also expressed in myocardium. Recognizing that the regulation of PDE5 in hypertrophy is not well understood, we assessed the response of PDE5 expression and the level of cGMP-dependent kinase I (cGKI) in the left and right ventricles of feline hypertrophy models.Using a cDNA library of feline aortic smooth muscle cells, we identified and cloned PDE5 cDNA for the first time in this species. The sequence shares 98% identity with its human orthologue at the amino acid level. E. coli expression of the cloned allele allowed selection of antibodies with appropriate specificity, facilitating the analysis of PDE5 expression in feline models created by selective proximal aortic (Ao) or pulmonary artery (PA) banding that resulted in hypertrophy of the left ventricle (LV) and right ventricle (RV), respectively. We demonstrated that PDE5 expression responded differentially with a decreased expression in the LV and an increased expression in the RV in the Ao-banded model. Similarly, in the PA-banded model, LV showed reduced expression while the RV expression was unaltered. In addition, the expression of cGKI was significantly decreased in the RV of Ao-banded group, correlating inversely with the increase in PDE5 expression.The differential regulation of PDE5 and cGKI expression suggests that the mechanisms involved in hypertrophy could be different in RV vs. LV. Reciprocal PDE5 and cGKI expression in the RV of Ao-banded model suggests functional significance for PDE5 up-regulation

    Analysis of Chicken Mucosal Immune Response to Eimeria tenella and Eimeria maxima Infection by Quantitative Reverse Transcription-PCR

    No full text
    The recent cloning of chicken genes coding for interleukins, chemokines, and other proteins involved in immune regulation and inflammation allowed us to analyze their expression during infection with Eimeria. The expression levels of different genes in jejunal and cecal RNA extracts isolated from uninfected chickens and chickens infected with Eimeria maxima or E. tenella were measured using a precise quantitative reverse transcription-PCR technique. Seven days after E. tenella infection, expression of the proinflammatory cytokine interleukin-1β (IL-1β) mRNA was increased 80-fold. Among the chemokines analyzed, the CC chemokines K203 (200-fold) and macrophage inflammatory factor 1β (MIP-1β) (80-fold) were strongly upregulated in the infected ceca, but the CXC chemokines IL-8 and K60 were not. However, the CXC chemokines were expressed at very high levels in uninfected cecal extracts. The levels of gamma interferon (IFN-γ) (300-fold), inducible nitric oxide synthase (iNOS) (200-fold), and myelomonocytic growth factor (MGF) (50-fold) were also highly upregulated during infection with E. tenella, whereas cyclooxygenase 2 showed a more modest (13-fold) increase. The genes upregulated during E. tenella infection were generally also upregulated during E. maxima infection but at a lower magnitude except for those encoding MIP-1β and MGF. For these two cytokines, no significant change in expression levels was observed after E. maxima infection. CD3(+) intraepithelial lymphocytes may participate in the IFN-γ upregulation observed after infection, since both recruitment and upregulation of the IFN-γ mRNA level were observed in the infected jejunal mucosa. Moreover, in the chicken macrophage cell line HD-11, CC chemokines, MGF, IL-1β, and iNOS were inducible by IFN-γ, suggesting that macrophages may be one of the cell populations involved in the upregulation of these cytokines observed in vivo during infection with Eimeria

    Cyclic GMP-Hydrolyzing Phosphodiesterases

    No full text

    cGK substrates

    No full text
    corecore