8 research outputs found
A Ground Control Station for Collaborative Unmanned Surface Vehicles
[ES] El Centro de Control de Tierra (CCT) es uno de los elementos imprescindibles para la supervisi贸n y control de veh铆culos aut贸nomos que realizan misiones complejas. En la actualidad cada vez hay m谩s aplicaciones donde se utilizan m煤ltiples veh铆culos aut贸nomos y el tradicional Centro de Control est谩 evolucionando para ser capaz de gestionar diversos veh铆culos y operadores. Este art铆culo presenta las caracter铆sticas m谩s relevantes de un CCT adaptable y vers谩til, especialmente dise帽ado para que un equipo heterog茅neo de operadores puedan monitorizar y supervisar el funcionamiento colaborativo de un conjunto heterog茅neo de veh铆culos aut贸nomos. Entre estas caracter铆sticas destacan la posibilidad de, seg煤n las necesidades de los operadores y de la misi贸n, 1) reconfigurar cu谩l (y c贸mo) es la informaci贸n que se muestra de cada veh铆culo a cada operador, 2) definir alarmas que atraigan la atenci贸n de los operadores ante determinados eventos (y liberen su carga de trabajo mientras estos no se den) y 3) re-asignar en tiempo real la gesti贸n de los veh铆culos a los diferentes operadores. Para alcanzarlas, se ha realizado un cuidadoso dise帽o de la arquitectura software del CCT, que se detalla en el art铆culo y que se encuentra formada por: un m贸dulo de comunicaciones; un m贸dulo planificador de alto nivel; un m贸dulo (replicable en tantos equipos como se desee) de monitorizaci贸n y supervisi贸n de veh铆culos; y tantos m贸dulos comandadores como veh铆culos diferentes existan en la misi贸n. Este CCT ha sido desarrollado dentro del proyecto de investigaci贸n SALACOM (Sistema Aut贸nomo de Localizaci贸n y Actuaci贸n ante Contaminantes en el Mar), en el que dos barcos aut贸nomos maniobran de forma colaborativa para desplegar una barrera para la contenci贸n de un vertido contaminante en el mar ydonde la incorporaci贸n del operador en la supervisi贸n y control de las maniobras de los veh铆culos es un requisito imprescindible para dar seguridad y confianza a la operaci贸n realizada. Finalmente, se presenta un caso de uso del Centro de Control de Tierra donde se realiza una maniobra de seguimiento entre dos veh铆culos aut贸nomos de superficie.[EN] The Ground Control Station (GCS) is one of the essential elements to supervise and control autonomous vehicles performing聽complex missions. The increasing number of systems that involve multiple autonomous vehicles is making traditional GCSs evolve to let them handle dierent vehicles and operators. In this article, we present the more relevant properties of a versatile adaptable GCS that has been especially designed to let multiple operators, each using a dierent computer equipment, be in charge of controlling a heterogeneous team of autonomous vehicles. Its main properties are the possibility of 1) reconfiguring which information is displayed to each operator, 2) defining alarms to draw the operators attention when required, and 3) re-assigning, in real-time, the vehicles to dierent operators. These properties are supported by a distributed design of the GCS software architecture, presented in the paper and consistent of: a communication module, a high level planner, replicable monitoring and supervising units, and as many commanders as vehicles within each mission. This GCS has been developed within SALACOM (an autonomous system for locating and acting against sea spills), where two Unmanned Surface Vehicles (USVs) cooperate to collect a sea spill under the supervision of several operators that are responsible of the security of the mission. Finally, this paper also presents a case of use of the GCS within a real-world experiment involving two USVs performing leader-follower formation maneouvres.Los autores del art麓谋culo quieren agradecer al Ministerio de Econom麓谋a y Competitividad espa帽ol su apoyo a trav茅s del proyecto SALACOM (DPI2013-46665-C2-1-R).Bonache Seco, J.; Dormido Canto, J.; Montalvo Martinez, M.; L贸pez-Orozco, J.; Besada Portas, E.; De La Cruz Garcia, J. (2017). Centro de Control de Tierra para Colaboraci贸n de Veh铆culos Aut贸nomos Marinos. Revista Iberoamericana de Autom谩tica e Inform谩tica industrial. 15(1):1-11. https://doi.org/10.4995/riai.2017.8737OJS111151ASTM, 2017. Committee F41 on unmanned maritime vehicle systems (umvs). [Online] https://www.astm.org/COMMITTEE/F41.htm.ASV, 2017. Asview control system. [Online] http://asvglobal.com/asviewcontrol-system/.Besada-Portas, E., Lopez-Orozco, J. A., Besada, J., Jesus, M., 2011. Multisensor fusion for linear control systems with asynchronous, out-of-sequence and erroneous data. Automatica 47 (7), 1399-1408. https://doi.org/10.1016/j.automatica.2011.02.030Besada-Portas, E., Lopez-Orozco, J. A., de la Cruz, J., 2002. Unified fusion system based on bayesian networks for autonomous mobile robots. In: Information Fusion, 2002. Proceedings of the Fifth International Conference on. Vol. 2. IEEE, pp. 873-880. https://doi.org/10.1109/ICIF.2002.1020900Bonache Seco, J. A., L贸pez Orozco, J. A., Besada Portas, E., de la Cruz, J. M., 2016. Centro de control vers谩til: Estado actual y evoluci贸n hacia la adaptabilidad. CEA, pp. 979-986.B眉rkle, A., Segor, F., Kollmann, M., Sch篓onbein, R., 2011. Universal ground control station for heterogeneous sensors. Journal On Advances in Telecommunications, IARIA 3 (3), 152-161.Burmeister, H.-C., Bruhn, W., R酶dseth, 脴. J., Porathe, T., 2014. Autonomous unmanned merchant vessel and its contribution towards the e-navigation implementation: The munin perspective. International Journal of e-Navigation and Maritime Economy 1, 1-13.Cummings, M. L., How, J. P., Whitten, A., Toupet, O., 2012. The impact of human-automation collaboration in decentralized multiple unmanned vehicle control. Proceedings of the IEEE 100 (3), 660-671. https://doi.org/10.1109/JPROC.2011.2174104de la Cruz, J. M., Lopez-Orozco, A, J., Besada Portas, E., Aranda Almansa, J., 2016. Control de formaciones de veh铆culos marinos de superficie con restricciones de entrada. CEA, pp. 1044-1051.de la Cruz, J. M., Lopez-Orozco, A, J., Besada Portas, E., Moreno Salinas, D., Aranda Almansa, J., 2014. Seguimiento de caminos para formaciones de veh铆culos marinos de superficie.de la Cruz, J. M., Lopez-Orozco, J. A., Besada-Portas, E., Aranda-Almansa, J., 2015. A streamlined nonlinear path following kinematic controller. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 6394-6401. https://doi.org/10.1109/ICRA.2015.7140097Heo, J., Kim, S., Kwon, Y., 2016. Design of ground control station for operation of multiple combat entities. Journal of Computer and Communications 4, 66-71. https://doi.org/10.4236/jcc.2016.45010Lalish, E., Morgansen, K. A., 2008. Decentralized reactive collision avoidance for multivehicle systems. In: Proceedings of the 47th IEEE Conference on Decision and Control. IEEE, pp. 1218-1224. https://doi.org/10.1109/CDC.2008.4738894Lapierre, L., Soetanto, D., 2007. Nonlinear path-following control of an auv. Ocean engineering 34 (11), 1734-1744. https://doi.org/10.1016/j.oceaneng.2006.10.019LibrePilot, 2015. Software suite to control multicopter and other rc-models. [Online] https://www.librepilot.org/site/index.html, accedido en marzo de 2017.Lindemuth, M., Murphy, R., Steimle, E., Armitage, W., Dreger, K., Elliot, T., Hall, M., Kalyadin, D., Kramer, J., Palankar, M., et al., 2011. Sea robot assisted inspection. IEEE robotics & automation magazine 18 (2), 96-107. https://doi.org/10.1109/MRA.2011.940994MAVLINK, 2017. Micro air vehicle communication protocol. [Online] http://qgroundcontrol.org/mavlink/start, accedido en Marzo, 2017.Moreno-Salinas, D., Besada-Portas, E., L贸pez-Orozco, J., Chaos, D., de la Cruz, J., Aranda, J., 2015. Symbolic regression for marine vehicles identification. IFAC-PapersOnLine 48 (16), 210-216. https://doi.org/10.1016/j.ifacol.2015.10.282Mupparapu, S. S., Chappell, S. G., Komerska, R. J., Blidberg, D. R., Nitzel, R., Benton, C., Popa, D. O., Sanderson, A. C., 2004. Autonomous systems monitoring and control (asmac)-an auv fleet controller. In: Autonomous Underwater Vehicles, 2004 IEEE/OES. IEEE, pp. 119-126.Murphy, R. R., Steimle, E., Griffin, C., Cullins, C., Hall, M., Pratt, K., 2008. Cooperative use of unmanned sea surface and micro aerial vehicles at hurricane wilma. Journal of Field Robotics 25 (3), 164-180. https://doi.org/10.1002/rob.20235Park, S., Deyst, J., How, J. P., 2007. Performance and lyapunov stability of a nonlinear path following guidance method. Journal of Guidance, Control, and Dynamics 30 (6), 1718-1728. https://doi.org/10.2514/1.28957Patterson, M. C., Mulligan, A., Boiteux, F., 2013. Safety and security applications for micro-unmanned surface vessels. In: 2013 OCEANS-San Diego. IEEE, pp. 1-6.QGroundControl, 2017. A uav control station. [Online] http://qgroundcontrol.com/, accedido en Marzo de 2017.Ribas, D., Palomeras, N., Ridao, P., Carreras, M., Mallios, A., 2012. Girona 500 auv: From survey to intervention. IEEE ASME Transactions on Mechatronics 17 (1), 46-53. https://doi.org/10.1109/TMECH.2011.2174065STANAG4586, 2012. Standard interfaces of uav control system (ucs) for nato uav interoperability, ed. 3. NATO standardization agency (nsa). [Online] http://nso.nato.int/nso/nsdd/listpromulg.html.Sutton, R., Sharma, S., Xao, T., 2011. Adaptive navigation systems for an unmanned surface vehicle. Journal of Marine Engineering & Technology 10 (3), 3-20.Walter, B. E., Knutzon, J. S., Sannier, A. V., Oliver, J. H., 2004. Virtual uav ground control station. In: AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit. https://doi.org/10.2514/6.2004-6320WGSM, 2017. Wave glider management system. [Online] https://www.liquidrobotics.com/platform/software/