40 research outputs found
Fostering economic growth, social inclusion & sustainability in Industry 4.0: a systemic approach
The most modern and mature industrial manufacturing revolution is known as Industry 4.0 (I4.0). Technological advance seeks to minimize all sorts of waste, optimizing the firm's performance operations aligning this its competitive advantage. While in developing economies often overlooked the society and environment under the current neoliberalism strategy, whose competitive approach is enforced by the State, with a detriment of local SMEs such as Mexico. Thereby, to lead I4.0 implementation for SMEs, the role of the State for a long-term strategic approach is of utmost importance. The industrial strategy should regard the imminent industrial revolution without leaving behind environmental and social dimensions to implement it, like the Scandinavian economies example. This research proposes the soft systems methodology for dealing with the sustainable complexity context and inclusive industrial development phenomena. Its holistic nature provides useful insights that devise how I4.0 and social inclusion fit into the Mexican context. The theoretical proposal builds upon the social inclusion state-of-the-art in the industry 4.0 and a survey for an affordable I4.0 initiative through a stakeholder system's network communication approach. The inclusive strategy is an effort to align root systems for sustainable development with stakeholders for Mexican SMEs in the manufacturing sector
New trends in the economic systems management in the context of modern global challenges
New trends in the economic systems management in the context of modern global challenges: collective monograph / scientific edited by M. Bezpartochnyi, in 2 Vol. // VUZF University of Finance, Business and Entrepreneurship. – Sofia: VUZF Publishing House “St. Grigorii Bogoslov”, 2020. – Vol. 1. – 309 p
The Physiology and Proteomics of Drought Tolerance in Maize: Early Stomatal Closure as a Cause of Lower Tolerance to Short-Term Dehydration?
Understanding the response of a crop to drought is the first step in the breeding of tolerant genotypes. In our study, two maize (Zea mays L.) genotypes with contrasting sensitivity to dehydration were subjected to moderate drought conditions. The subsequent analysis of their physiological parameters revealed a decreased stomatal conductance accompanied by a slighter decrease in the relative water content in the sensitive genotype. In contrast, the tolerant genotype maintained open stomata and active photosynthesis, even under dehydration conditions. Drought-induced changes in the leaf proteome were analyzed by two independent approaches, 2D gel electrophoresis and iTRAQ analysis, which provided compatible but only partially overlapping results. Drought caused the up-regulation of protective and stress-related proteins (mainly chaperones and dehydrins) in both genotypes. The differences in the levels of various detoxification proteins corresponded well with the observed changes in the activities of antioxidant enzymes. The number and levels of up-regulated protective proteins were generally lower in the sensitive genotype, implying a reduced level of proteosynthesis, which was also indicated by specific changes in the components of the translation machinery. Based on these results, we propose that the hypersensitive early stomatal closure in the sensitive genotype leads to the inhibition of photosynthesis and, subsequently, to a less efficient synthesis of the protective/detoxification proteins that are associated with drought tolerance
New 55Co-labeled Albumin-Binding Folate Derivatives as Potential PET Agents for Folate Receptor Imaging
Overexpression of folate receptors (FRs) on different tumor types (e.g., ovarian, lung) make FRs attractive in vivo targets for directed diagnostic/therapeutic agents. Currently, no diagnostic agent suitable for positron emission tomography (PET) has been adopted for clinical FR imaging. In this work, two 55Co-labeled albumin-binding folate derivatives-[55Co]Co-cm10 and [55Co]Co-rf42-with characteristics suitable for PET imaging have been developed and evaluated. High radiochemical yields (≥95%) and in vitro stabilities (≥93%) were achieved for both compounds, and cell assays demonstrated FR-mediated uptake. Both 55Co-labeled folate conjugates demonstrated high tumor uptake of 17% injected activity per gram of tissue (IA/g) at 4 h in biodistribution studies performed in KB tumor-bearing mice. Renal uptake was similar to other albumin-binding folate derivatives, and liver uptake was lower than that of previously reported [64Cu]Cu-rf42. Small animal PET/CT images confirmed the biodistribution results and showed the clear delineation of FR-expressing tumors
Vliv kování za tepla na strukturu HS 6-5-2 rychlořezné oceli
Microstructure analysis was performed on rolled bars of high-speed steel after two and three forging cycles, each cycle comprising one upsetting and one drawing out operation. High-speed steels belong to difficult-to-form materials with a narrow forging temperature interval. Forging above the maximum forging temperature may lead to grain coarsening. Below the minimum forging temperature, deformation resistance of the material increases, and the workpiece may fail. Using numerical modelling, special forging dies were designed and effective strain distribution was calculated for an axial cross-section plane in specimens after two and three forging cycles. The purpose of the analysis was to identify the relationship between the amount of effective strain and the shape and size of austenite grain and the volume fraction and density of carbidesafter forging. The size of prior austenite grains was measured using the linear intercept method which is based on the Snyder-Graff method. Grain shapes were characterized in terms of circularity, which is the difference between the shape in question and a circle. With increasing amount of strain, the grains in the materialbecame finer, as undissolved carbides impeded grain growth. In as-received rolled condition, the austenite grain size was G9. After three forging cycles, it was smaller, G11 (the higher the number, the smaller the grains). Circularity characterizes the complexity of a grain shape.Micrographs of carbide particles were taken using a scanning electron microscope and examined with NISElements image analysis software. The majority of carbides were sized between 0.2 and 2μm.The carbides which are less than 1μm in size do not shrink in response to increasing strain and their quantity does not change appreciably. Carbides with a size of 1-2μm show a different behaviour. In the central region of specimens, where strain is the largest, their amounts are much larger than in less-worked regions
Researching women's television history
This entry offers an overview of women working in television, historical patterns and contemporary trends, and a review of the different approaches to researching that landscape. Framed by the experience of a range of different countries (United Kingdom, Australia, Brazil, Czech Republic, Denmark, East Asia, France, Greece, India, Italy, Nigeria, and the United States), the entry looks at national patterns of employment and trends in labor