6,315 research outputs found

    Strong thermal leptogenesis and the absolute neutrino mass scale

    Get PDF
    We show that successful strong thermal leptogenesis, where the final asymmetry is independent of the initial conditions and in particular a large pre-existing asymmetry is efficiently washed-out, favours values of the lightest neutrino mass m1≳10 meVm_1 \gtrsim 10\,{\rm meV} for normal ordering (NO) and m1≳3 meVm_1 \gtrsim 3\,{\rm meV} for inverted ordering (IO) for models with orthogonal matrix entries respecting ∣Ωij2∣≲2|\Omega_{ij}^2| \lesssim 2. . We show analytically why lower values of m1m_1 require a high level of fine tuning in the seesaw formula and/or in the flavoured decay parameters (in the electronic for NO, in the muonic for IO). We also show how this constraint exists thanks to the measured values of the neutrino mixing angles and can be tighten by a future determination of the Dirac phase. Our analysis also allows to place more stringent constraint for a specific model or class of models, such as SO(10)SO(10)-inspired models, and shows that some models cannot realise strong thermal leptogenesis for any value of m1m_1. A scatter plot analysis fully supports the analytical results. We also briefly discuss the interplay with absolute neutrino mass scale experiments concluding that they will be able in the coming years to either corner strong thermal leptogenesis or find positive signals pointing to a non-vanishing m1m_1. Since the constraint is much stronger for NO than for IO, it is very important that new data from planned neutrino oscillation experiments will be able to solve the ambiguity.Comment: 22 pages; 7 figures; v2: matches JCAP versio
    • …
    corecore