141 research outputs found
Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis
The cosmic energy density in the form of radiation before and during Big Bang
Nucleosynthesis (BBN) is typically parameterized in terms of the effective
number of neutrinos N_eff. This quantity, in case of no extra degrees of
freedom, depends upon the chemical potential and the temperature characterizing
the three active neutrino distributions, as well as by their possible
non-thermal features. In the present analysis we determine the upper bounds
that BBN places on N_eff from primordial neutrino--antineutrino asymmetries,
with a careful treatment of the dynamics of neutrino oscillations. We consider
quite a wide range for the total lepton number in the neutrino sector, eta_nu=
eta_{nu_e}+eta_{nu_mu}+eta_{nu_tau} and the initial electron neutrino asymmetry
eta_{nu_e}^in, solving the corresponding kinetic equations which rule the
dynamics of neutrino (antineutrino) distributions in phase space due to
collisions, pair processes and flavor oscillations. New bounds on both the
total lepton number in the neutrino sector and the nu_e -bar{nu}_e asymmetry at
the onset of BBN are obtained fully exploiting the time evolution of neutrino
distributions, as well as the most recent determinations of primordial 2H/H
density ratio and 4He mass fraction. Note that taking the baryon fraction as
measured by WMAP, the 2H/H abundance plays a relevant role in constraining the
allowed regions in the eta_nu -eta_{nu_e}^in plane. These bounds fix the
maximum contribution of neutrinos with primordial asymmetries to N_eff as a
function of the mixing parameter theta_13, and point out the upper bound N_eff
< 3.4. Comparing these results with the forthcoming measurement of N_eff by the
Planck satellite will likely provide insight on the nature of the radiation
content of the universe.Comment: 17 pages, 9 figures, version to be published in JCA
Development of an immunosensor for PfHRP 2 as a biomarker for Malaria detection
Plasmodium falciparum histidine-rich protein 2 (PfHRP 2) was selected in this work as the biomarker for the detection and diagnosis of malaria. An enzyme-linked immunosorbent assay (ELISA) was first developed to evaluate the immunoreagentâs suitability for the sensorâs development. A gold-based sensor with an integrated counter and an Ag/AgCl reference electrode was first selected and characterised and then used to develop the immunosensor for PfHRP 2, which enables a low cost, easy to use, and sensitive biosensor for malaria diagnosis. The sensor was applied to immobilise the anti-PfHRP 2 monoclonal antibody as the capture receptor. A sandwich ELISA assay format was constructed using horseradish peroxidase (HRP) as the enzyme label, and the electrochemical signal was generated using a 3, 3âČ, 5, 5âČtetramethyl-benzidine dihydrochloride (TMB)/H2O2 system. The performance of the assay and the sensor were optimised and characterised, achieving a PfHRP 2 limit of detection (LOD) of 2.14 ng·mLâ1 in buffer samples and 2.95 ngâmLâ1 in 100% spiked serum samples. The assay signal was then amplified using gold nanoparticles conjugated detection antibody-enzyme and a detection limit of 36 pgâmLâ1 was achieved in buffer samples and 40 pgâmLâ1 in serum samples. This sensor format is ideal for malaria detection and on-site analysis as a point-of-care device (POC) in resource-limited settings where the implementation of malaria diagnostics is essential in control and elimination efforts
Increasing Neff with particles in thermal equilibrium with neutrinos
Recent work on increasing the effective number of neutrino species (Neff) in
the early universe has focussed on introducing extra relativistic species
(`dark radiation'). We draw attention to another possibility: a new particle of
mass less than 10 MeV that remains in thermal equilibrium with neutrinos until
it becomes non-relativistic increases the neutrino temperature relative to the
photons. We demonstrate that this leads to a value of Neff that is greater than
three and that Neff at CMB formation is larger than at BBN. We investigate the
constraints on such particles from the primordial abundance of helium and
deuterium created during BBN and from the CMB power spectrum measured by ACT
and SPT and find that they are presently relatively unconstrained. We forecast
the sensitivity of the Planck satellite to this scenario: in addition to
dramatically improving constraints on the particle mass, in some regions of
parameter space it can discriminate between the new particle being a real or
complex scalar.Comment: 10 pages, 5 figures v2 matches version to appear in JCA
Mapping systematic errors in helium abundance determinations using Markov Chain Monte Carlo
Monte Carlo techniques have been used to evaluate the statistical and
systematic uncertainties in the helium abundances derived from extragalactic
H~II regions. The helium abundance is sensitive to several physical parameters
associated with the H~II region. In this work, we introduce Markov Chain Monte
Carlo (MCMC) methods to efficiently explore the parameter space and determine
the helium abundance, the physical parameters, and the uncertainties derived
from observations of metal poor nebulae. Experiments with synthetic data show
that the MCMC method is superior to previous implementations (based on flux
perturbation) in that it is not affected by biases due to non-physical
parameter space. The MCMC analysis allows a detailed exploration of
degeneracies, and, in particular, a false minimum that occurs at large values
of optical depth in the He~I emission lines. We demonstrate that introducing
the electron temperature derived from the [O~III] emission lines as a prior, in
a very conservative manner, produces negligible bias and effectively eliminates
the false minima occurring at large optical depth. We perform a frequentist
analysis on data from several "high quality" systems. Likelihood plots
illustrate degeneracies, asymmetries, and limits of the determination. In
agreement with previous work, we find relatively large systematic errors,
limiting the precision of the primordial helium abundance for currently
available spectra.Comment: 25 pages, 11 figure
Searching for sterile neutrinos in ice
Oscillation interpretation of the results from the LSND, MiniBooNE and some
other experiments requires existence of sterile neutrino with mass eV
and mixing with the active neutrinos . It has
been realized some time ago that existence of such a neutrino affects
significantly the fluxes of atmospheric neutrinos in the TeV range which can be
tested by the IceCube Neutrino Observatory. In view of the first IceCube data
release we have revisited the oscillations of high energy atmospheric neutrinos
in the presence of one sterile neutrino. Properties of the oscillation
probabilities are studied in details for various mixing schemes both
analytically and numerically. The energy spectra and angular distributions of
the events have been computed for the simplest mass, and
mixing schemes and confronted with the IceCube data. An
illustrative statistical analysis of the present data shows that in the
mass mixing case the sterile neutrinos with parameters required by
LSND/MiniBooNE can be excluded at about level. The
mixing scheme, however, can not be ruled out with currently available IceCube
data.Comment: 41 pages, 16 figures. Accepted for publication in JHEP. Minor changes
from the previous versio
Primordial Nucleosynthesis
Primordial nucleosynthesis, or Big-Bang Nucleosynthesis (BBN), is one of the
three evidences for the Big-Bang model, together with the expansion of the
Universe and the Cosmic Microwave Background. There is a good global agreement
over a range of nine orders of magnitude between abundances of 4He, D, 3He and
7Li deduced from observations, and calculated in primordial nucleosynthesis.
This comparison was used to determine the baryonic density of the Universe. For
this purpose, it is now superseded by the analysis of the Cosmic Microwave
Background (CMB) radiation anisotropies. However, there remain, a yet
unexplained, discrepancy of a factor 3-5, between the calculated and observed
lithium primordial abundances, that has not been reduced, neither by recent
nuclear physics experiments, nor by new observations. We review here the
nuclear physics aspects of BBN for the production of 4He, D, 3He and 7Li, but
also 6Li, 9Be, 11B and up to CNO isotopes. These are, for instance, important
for the initial composition of the matter at the origin of the first stars.
Big-Bang nucleosynthesis, that has been used, to first constrain the baryonic
density, and the number of neutrino families, remains, a valuable tool to probe
the physics of the early Universe, like variation of "constants" or alternative
theories of gravity.Comment: Invited Plenary Talk given at the 11th International Conference on
Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1,
2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference
Series (JPCS
Asymmetric Dark Matter and Dark Radiation
Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry,
similar to the one observed in the Baryon sector, to account for the Dark
Matter (DM) abundance. Both asymmetries are usually generated by the same
mechanism and generally related, thus predicting DM masses around 5 GeV in
order to obtain the correct density. The main challenge for successful models
is to ensure efficient annihilation of the thermally produced symmetric
component of such a light DM candidate without violating constraints from
collider or direct searches. A common way to overcome this involves a light
mediator, into which DM can efficiently annihilate and which subsequently
decays into Standard Model particles. Here we explore the scenario where the
light mediator decays instead into lighter degrees of freedom in the dark
sector that act as radiation in the early Universe. While this assumption makes
indirect DM searches challenging, it leads to signals of extra radiation at BBN
and CMB. Under certain conditions, precise measurements of the number of
relativistic species, such as those expected from the Planck satellite, can
provide information on the structure of the dark sector. We also discuss the
constraints of the interactions between DM and Dark Radiation from their
imprint in the matter power spectrum.Comment: 22 pages, 5 figures, to be published in JCAP, minor changes to match
version to be publishe
Isocurvature perturbations in extra radiation
Recent cosmological observations, including measurements of the CMB
anisotropy and the primordial helium abundance, indicate the existence of an
extra radiation component in the Universe beyond the standard three neutrino
species. In this paper we explore the possibility that the extra radiation has
isocurvatrue fluctuations. A general formalism to evaluate isocurvature
perturbations in the extra radiation is provided in the mixed inflaton-curvaton
system, where the extra radiation is produced by the decay of both scalar
fields. We also derive constraints on the abundance of the extra radiation and
the amount of its isocurvature perturbation. Current observational data favors
the existence of an extra radiation component, but does not indicate its having
isocurvature perturbation. These constraints are applied to some particle
physics motivated models. If future observations detect isocurvature
perturbations in the extra radiation, it will give us a hint to the origin of
the extra radiation.Comment: 41 pages, 8 figures; version accepted for publication in JCA
Restrictions on the lifetime of sterile neutrinos from primordial nucleosynthesis
We analyze the influence of decaying sterile neutrinos with the masses in the
range 1-140 MeV on the primordial Helium-4 abundance, explicitly solving the
Boltzmann equations for all particle species, taking into account neutrino
flavour oscillations, and paying special attention to systematic uncertainties.
We show that the Helium abundance depends only on the sterile neutrino lifetime
and not on the way the active-sterile mixing is distributed between flavours,
and derive an upper bound on the lifetime. We also demonstrate that the recent
results of Izotov & Thuan [arXiv:1001.4440], who find 2sigma higher than
predicted by the standard primordial nucleosynthesis value of Helium-4
abundance, are consistent with the presence in the plasma of sterile neutrinos
with the lifetime 0.01-2 seconds. The decay of these particles perturbs the
spectra of (decoupled) neutrinos and heats photons, changing the ratio of
neutrino to photon energy density, that can be interpreted as extra neutrino
species at the recombination epoch.Comment: 17 pp. + Appendices. Analysis of deuterium bounds and more accurate
account of CMB bounds on Helium-4 is added. Final version to appear in JCA
Cosmological bounds on sub-MeV mass axions
Axions with mass greater than 0.7 eV are excluded by cosmological precision
data because they provide too much hot dark matter. While for masses above 20
eV the axion lifetime drops below the age of the universe, we show that the
cosmological exclusion range can be extended from 0.7 eV till 300 keV,
primarily by the cosmic deuterium abundance: axion decays would strongly modify
the baryon-to-photon ratio at BBN relative to the one at CMB decoupling.
Additional arguments include neutrino dilution relative to photons by axion
decays and spectral CMB distortions. Our new cosmological constraints
complement stellar-evolution limits and laboratory bounds.Comment: 19 pages, 10 figure
- âŠ