5,840 research outputs found

    Comment on "Minimal size of a barchan dune"

    Full text link
    It is now an accepted fact that the size at which dunes form from a flat sand bed as well as their `minimal size' scales on the flux saturation length. This length is by definition the relaxation length of the slowest mode toward equilibrium transport. The model presented by Parteli, Duran and Herrmann [Phys. Rev. E 75, 011301 (2007)] predicts that the saturation length decreases to zero as the inverse of the wind shear stress far from the threshold. We first show that their model is not self-consistent: even under large wind, the relaxation rate is limited by grain inertia and thus can not decrease to zero. A key argument presented by these authors comes from the discussion of the typical dune wavelength on Mars (650 m) on the basis of which they refute the scaling of the dune size with the drag length evidenced by Claudin and Andreotti [Earth Pla. Sci. Lett. 252, 30 (2006)]. They instead propose that Martian dunes, composed of large grains (500 micrometers), were formed in the past under very strong winds. We show that this saltating grain size, estimated from thermal diffusion measurements, is not reliable. Moreover, the microscopic photographs taken by the rovers on Martian aeolian bedforms show a grain size of 87 plus or minus 25 micrometers together with hematite spherules at millimetre scale. As those so-called ``blueberries'' can not be entrained by reasonable winds, we conclude that the saltating grains on Mars are the small ones, which gives a second strong argument against the model of Parteli et al.Comment: A six page comment on ``Minimal size of a barchan dune'' by Parteli, Duran and Herrmann [Phys. Rev. E 75, 011301 (2007) arXiv:0705.1778

    Dynamic and instability of submarine avalanches

    Full text link
    We perform a laboratory-scale experiment of submarine avalanches on a rough inclined plane. A sediment layer is prepared and thereafter tilted up to an angle lower than the spontaneous avalanche angle. The sediment is scrapped until an avalanche is triggered. Based on the stability diagram of the sediment layer, we investigate different structures for the avalanche front dynamics. First we see a straight front descending the slope, and then a transverse instability occurs. Eventually, a fingering instability shows up similar to rivulets appearing for a viscous fluid flowing down an incline. The mechanisms leading to this new instability and the wavelength selection are discussed.Comment: 4 pages, 6 figures, to appear in the proceedings of Powders and Grains 200

    Evidence of Raleigh-Hertz surface waves and shear stiffness anomaly in granular media

    Full text link
    Due to the non-linearity of Hertzian contacts, the speed of sound in granular matter increases with pressure. Under gravity, the non-linear elastic description predicts that acoustic propagation is only possible through surface modes, called Rayleigh-Hertz modes and guided by the index gradient. Here we directly evidence these modes in a controlled laboratory experiment and use them to probe the elastic properties of a granular packing under vanishing confining pressure. The shape and the dispersion relation of both transverse and sagittal modes are compared to the prediction of non-linear elasticity that includes finite size effects. This allows to test the existence of a shear stiffness anomaly close to the jamming transition.Comment: 4 pages 4 figure

    Transition from viscous to inertial regime in dense suspensions

    Full text link
    Non-Brownian suspensions present a transition from Newtonian behavior in the zero-shear limit to a shear thickening behaviour at a large shear rate, none of which is clearly understood so far. Here, we carry out numerical simulations of such an athermal dense suspension under shear, at an imposed confining pressure. This set-up is conceptually identical to the recent experiments of Boyer and co-workers [Phys. Rev. Lett. 107,188301 (2011)]. Varying the interstitial fluid viscosities, we recover the Newtonian and Bagnoldian regimes and show that they correspond to a dissipation dominated by viscous and contact forces respectively. We show that the two rheological regimes can be unified as a function of a single dimensionless number, by adding the contributions to the dissipation at a given volume fraction.Comment: 4 pages, 3 figure

    Editorial

    Get PDF

    Search for α\alpha decay of 151^{151}Eu to the first excited level of 147^{147}Pm using underground γ\gamma-ray spectrometry

    Full text link
    The alpha decay of 151^{151}Eu to the first excited level of 147^{147}Pm (Jπ=5/2+J^\pi = 5/2^+, Eexc=91.1E_{exc}=91.1 keV) was searched for at the HADES underground laboratory (≈500\approx 500 m w.e.). A sample of high purity europium oxide with mass of 303 g and a natural isotopic composition has been measured over 2232.8 h with a high energy resolution ultra-low background n-type semi-planar HPGe detector (40 cm3^3) with sub-micron deadlayer. The new improved half-life limit has been set as T1/2≥3.7×1018T_{1/2} \geq 3.7\times 10^{18} yr at 68% C.L. Possibilities to improve the sensitivity of the experiment, which is already near the theoretical predictions, are discussed. New half-life limit for α\alpha decay of 153^{153}Eu is also set as T1/2≥5.5×1017T_{1/2} \geq 5.5\times 10^{17} yr.Comment: 11 pages, 5 figures, 2 tables, 18 reference
    • …
    corecore