8 research outputs found

    A practical step length algorithm using lower limb angular velocities

    No full text
    The use of Inertial Measurement Units (IMUs) for spatial gait analysis has opened the door to unconstrained measurements within the home and community. Bandwidth, cost limitations, and ease of use has historically restricted the number and location of sensors worn on the body. In this paper, we describe a four-sensor configuration of IMUs placed on the shanks and thighs that is sufficient to provide an accurate measure of temporal gait parameters, spatial gait parameters, and joint angle dynamics during ambulation. Estimating spatial gait parameters solely from gyroscope data is preferred because gyroscopes are less susceptible to sensor noise and a system comprised of only gyroscopes uses decreased bandwidth compared to a typical 9 degree-of-freedom IMU. The purpose of this study was to determine the validity of a novel method of step length estimation using gyroscopes attached to the shanks and thighs. An Inverted Pendulum Model algorithm (IPM) was proposed to calculate step length, stride length, and gait speed. The algorithm incorporates heel-strike events and average forward velocity per step to make these assessments. IMU algorithm accuracy was determined via concurrent validity with an instrumented walkway and results explained via the collision model of gait. The IPM produced accurate estimates of step length, stride length, and gait speed with a mean difference of 3 cm and an RMSE of 6.6 cm for step length, thus establishing a new approach for spatial gait parameter calculation. The lack of numerical integration in IPM makes it well suited for use in continuous monitoring applications where sensor sampling rates are restricted

    The development and concurrent validity of a real-time algorithm for temporal gait analysis using inertial measurement units

    No full text
    The use of inertial measurement units (IMUs) for gait analysis has emerged as a tool for clinical applications. Shank gyroscope signals have been utilized to identify heel-strike and toe-off, which serve as the foundation for calculating temporal parameters of gait such as single and double limb support time. Recent publications have shown that toe-off occurs later than predicted by the dual minima method (DMM), which has been adopted as an IMU-based gait event detection algorithm.In this study, a real-time algorithm, Noise-Zero Crossing (NZC), was developed to accurately compute temporal gait parameters. Our objective was to determine the concurrent validity of temporal gait parameters derived from the NZC algorithm against parameters measured by an instrumented walkway. The accuracy and precision of temporal gait parameters derived using NZC were compared to those derived using the DMM. The results from Bland-Altman Analysis showed that the NZC algorithm had excellent agreement with the instrumented walkway for identifying the temporal gait parameters of Gait Cycle Time (GCT), Single Limb Support (SLS) time, and Double Limb Support (DLS) time. By utilizing the moment of zero shank angular velocity to identify toe-off, the NZC algorithm performed better than the DMM algorithm in measuring SLS and DLS times. Utilizing the NZC algorithm’s gait event detection preserves DLS time, which has significant clinical implications for pathologic gait assessment
    corecore