4,736 research outputs found
Ground states with cluster structures in a frustrated Heisenberg chain
We examine the ground state of a Heisenberg model with arbitrary spin S on a
one-dimensional lattice composed of diamond-shaped units. A unit includes two
types of antiferromagnetic exchange interactions which frustrate each other.
The system undergoes phase changes when the ratio between the
exchange parameters varies. In some phases, strong frustration leads to larger
local structures or clusters of spins than a dimer. We prove for arbitrary S
that there exists a phase with four-spin cluster states, which was previously
found numerically for a special value of in the S=1/2 case. For S=1/2
we show that there are three ground state phases and determine their
boundaries.Comment: 4 pages, uses revtex.sty, 2 figures available on request from
[email protected], to be published in J. Phys.: Cond. Mat
Metabolic modeling and analysis of the metabolic switch in Streptomyces coelicolor
Background
The transition from exponential to stationary phase in Streptomyces coelicolor is accompanied by a major metabolic switch and results in a strong activation of secondary metabolism. Here we have explored the underlying reorganization of the metabolome by combining computational predictions based on constraint-based modeling and detailed transcriptomics time course observations.
Results
We reconstructed the stoichiometric matrix of S. coelicolor, including the major antibiotic biosynthesis pathways, and performed flux balance analysis to predict flux changes that occur when the cell switches from biomass to antibiotic production. We defined the model input based on observed fermenter culture data and used a dynamically varying objective function to represent the metabolic switch. The predicted fluxes of many genes show highly significant correlation to the time series of the corresponding gene expression data. Individual mispredictions identify novel links between antibiotic production and primary metabolism.
Conclusion
Our results show the usefulness of constraint-based modeling for providing a detailed interpretation of time course gene expression data
Room-temperature ferromagnetism in Sr_(1-x)Y_xCoO_(3-delta) (0.2 < x < 0.25)
We have measured magnetic susceptibility and resistivity of
SrYCoO ( 0.1, 0.15, 0.2, 0.215, 0.225, 0.25, 0.3,
and 0.4), and have found that SrYCoO is a room
temperature ferromagnet with a Curie temperature of 335 K in a narrow
compositional range of 0.2 0.25. This is the highest transition
temperature among perovskite Co oxides. The saturation magnetization for
0.225 is 0.25 /Co at 10 K, which implies that the observed
ferromagnetism is a bulk effect. We attribute this ferromagnetism to a peculiar
Sr/Y ordering.Comment: 5 pages, 4 figure
Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues
Elastic cavitation is a well-known physical process by which elastic materials under stress can open cavities. Usually, cavitation is induced by applied loads on the elastic body. However, growing materials may generate stresses in the absence of applied loads and could induce cavity opening. Here, we demonstrate the possibility of spontaneous growth-induced cavitation in elastic materials and consider the implications of this phenomenon to biological tissues and in particular to the problem of schizogenous aerenchyma formation
Average Structures of a Single Knotted Ring Polymer
Two types of average structures of a single knotted ring polymer are studied
by Brownian dynamics simulations. For a ring polymer with N segments, its
structure is represented by a 3N -dimensional conformation vector consisting of
the Cartesian coordinates of the segment positions relative to the center of
mass of the ring polymer. The average structure is given by the average
conformation vector, which is self-consistently defined as the average of the
conformation vectors obtained from a simulation each of which is rotated to
minimize its distance from the average conformation vector. From each
conformation vector sampled in a simulation, 2N conformation vectors are
generated by changing the numbering of the segments. Among the 2N conformation
vectors, the one closest to the average conformation vector is used for one
type of the average structure. The other type of the averages structure uses
all the conformation vectors generated from those sampled in a simulation. In
thecase of the former average structure, the knotted part of the average
structure is delocalized for small N and becomes localized as N is increased.
In the case of the latter average structure, the average structure changes from
a double loop structure for small N to a single loop structure for large N,
which indicates the localization-delocalization transition of the knotted part.Comment: 15 pages, 19 figures, uses jpsj2.cl
Scaling Theory of Antiferromagnetic Heisenberg Ladder Models
The antiferromagnetic Heisenberg model on multi-leg ladders is
investigated. Criticality of the ground-state transition is explored by means
of finite-size scaling. The ladders with an even number of legs and those with
an odd number of legs are distinguished clearly. In the former, the energy gap
opens up as , where is the strength of the
antiferromagnetic inter-chain coupling. In the latter, the critical phase with
the central charge extends over the whole region of .Comment: 12 pages with 9 Postscript figures. To appear in J. Phys. A: Math.
Ge
Theoretical Study on Superconductivity in Boron-Doped Diamond
We consider superconductivity in boron (B) doped diamond using a simplified
model for the valence band of diamond. We treat the effects of substitutional
disorder of B ions by the coherent potential approximation (CPA) and those of
the attractive force between holes by the ladder approximation under the
assumption of instantaneous interaction with the Debye cutoff. We thereby
calculate the quasiparticle life time, the evolution of the single-particle
spectra due to doping, and the effect of disorder on the superconducting
critical temperature . We in particular compare our results with those for
supercell calculations to see the role of disorder, which turns out to be of
crucial importance to .Comment: 9 pages, 13 figures, submitted to J. Phys. Soc. Jpn., Errors in
embedded eps figure files have been correcte
Spin Dynamics of the Spin-1/2 Kagome Lattice Antiferromagnet ZnCu_3(OH)_6Cl_2
We have performed thermodynamic and neutron scattering measurements on the
S=1/2 kagome lattice antiferromagnet Zn Cu_3 (OH)_6 Cl_2. The susceptibility
indicates a Curie-Weiss temperature of ~ -300 K; however, no magnetic order is
observed down to 50 mK. Inelastic neutron scattering reveals a spectrum of low
energy spin excitations with no observable gap down to 0.1 meV. The specific
heat at low-T follows a power law with exponent less than or equal to 1. These
results suggest that an unusual spin-liquid state with essentially gapless
excitations is realized in this kagome lattice system.Comment: 4 pages, 3 figures; v2: Updates to authors list and references; v3:
Updated version; v4: Published versio
- …