8,955 research outputs found

    Pseudoclassical model for Weyl particle in 10 dimensions

    Get PDF
    A pseudoclassical model to describe Weyl particle in 10 dimensions is proposed. In course of quantization both the massless Dirac equation and the Weyl condition are reproduced automatically. The construction can be relevant to Ramond-Neveu-Schwarz strings where the Weyl reduction in the Ramond sector has to be made by hand.Comment: 5 page

    Analytic Torsion on Hyperbolic Manifolds and the Semiclassical Approximation for Chern-Simons Theory

    Get PDF
    The invariant integration method for Chern-Simons theory for gauge group SU(2) and manifold \Gamma\H^3 is verified in the semiclassical approximation. The semiclassical limit for the partition function associated with a connected sum of hyperbolic 3-manifolds is presented. We discuss briefly L^2 - analytical and topological torsions of a manifold with boundary.Comment: 12 pages, LaTeX fil

    The Conformal Anomaly in General Rank 1 Symmetric Spaces and Associated Operator Product

    Get PDF
    We compute the one-loop effective action and the conformal anomaly associated with the product ⨂pLp\bigotimes_p{\cal L}_p of the Laplace type operators Lp,p=1,2{\cal L}_p, p=1,2, acting in irreducible rank 1 symmetric spaces of non-compact type. The explicit form of the zeta functions and the conformal anomaly of the stress-energy momentum tensor is derived.Comment: 10 pages, LaTe

    Forms on Vector Bundles Over Compact Real Hyperbolic Manifolds

    Full text link
    We study gauge theories based on abelian p−p- forms on real compact hyperbolic manifolds. The tensor kernel trace formula and the spectral functions associated with free generalized gauge fields are analyzed.Comment: Int. Journ. Modern Physics A, vol. 18 (2003), 2041-205

    On Useful Conformal Tranformations In General Relativity

    Full text link
    Local conformal transformations are known as a useful tool in various applications of the gravitational theory, especially in cosmology. We describe some new aspects of these transformations, in particular using them for derivation of Einstein equations for the cosmological and Schwarzschild metrics. Furthermore, the conformal transformation is applied for the dimensional reduction of the Gauss-Bonnet topological invariant in d=4d=4 to the spaces of lower dimensions.Comment: 17 pages, LaTeX. The paper is intended mainly for pedagogical purposes and represents a collection of exercises concerning local conformal transformations and dimensional reduction. To be published in "Gravitation and Cosmology

    Outlook in tissue-engineered magnetic systems and biomagnetic control

    Get PDF
    The advancement of tissue engineering strategies has opened up new therapeutic avenues in the regeneration of many musculoskeletal tissues and cell niches. The burst of research in nanotechnology associated with tissue engineering brings inputs for the precise control of cells and cellular environments, that can play an important role in the development of these new therapies. Magnetic actuation, especially in combination with magnetic nanoparticles, may be a valuable tool in the interaction with living systems, such as stem cell guidance, retention, stimulation, and differentiation. Advances in the field of magnetic technology have also enabled the fabrication of increasingly complex systems such as cell sheets, organoids, or bioprinted scaffolds. Our Opinion article highlights this promising field of research and attempts to cover some of the most recent contributions to both tissue engineering and regenerative medicine. The advancement of tissue engineering strategies has opened up new therapeutic avenues in the regeneration of many musculoskeletal tissues and cell niches. The burst of research in nanotechnology associated with tissue engineering brings inputs for the precise control of cells and cellular environments, that can play an important role in the development of these new therapies. Magnetic actuation, especially in combination with magnetic nanoparticles, may be a valuable tool in the interaction with living systems, such as stem cell guidance, retention, stimula- tion, and differentiation. Advances in the field of magnetic technology have also enabled the fabrication of increasingly complex systems such as cell sheets, organoids, or bioprinted scaffolds. Our Opinion article highlights this promising field of research and attempts to cover some of the most recent con- tributions to both tissue engineering and regenerative medicine.Authors acknowledge the European Research Council COG MagTendon No. 772817, the H2020 Achilles Twinning project No. 810850, and the FCT e Fundação para a Ciência e a Tecnologia under the Scientific Employment Stimulus - Individual Call (CEEC Individual) - 2020.01157. CEECIND/CP1600/CT0024
    • …
    corecore