30,393 research outputs found

    Introduction of Macromolecules into Bovine Adrenal Medullary Chromaffin Cells and Rat Pheochromocytoma Cells (PC12) by Permeabilization with Streptolysin O: Inhibitory Effect of Tetanus Toxin on Catecholamine Secretion

    Get PDF
    Conditions are described for controlled plasma membrane permeabilization of rat pheochromocytoma cells (PC12) and cultured bovine adrenal chromaffin cells by Streptolysin O (SLO). The transmembrane pores created by SLO invoke rapid efflux of intracellular 86Rb+ and ATP, and also permit passive diffusion of proteins, including immunoglobulins, into the cells. SLO-permeabilized PC12 cells release [3H]dopamine in response to micromolar concentrations of free Ca2+. Permeabilized adrenal chromaffin cells present a similar exocytotic response to Ca2+ in the presence of Mg2+/ ATP. Permeabilized PC12 cells accumulate antibodies against synaptophysin and calmodulin, but neither antibody reduces the Ca2+-dependent secretory response. Reduced tetanus toxin, although ineffective when applied to intact chromaffin cells, inhibits Ca2+-induced exocytosis by both types of permeabilized cells studied. Omission of dithiothreitol, toxin inactivation by boiling, or preincubation with neutralizing antibodies abolishes the inhibitory effect. The data indicate that plasma membrane permeabilization by Streptolysin O is a useful tool to probe and define cellular components that are involved in the final steps of exocytosis

    Amylase release from streptolysin O-permeabilized pancreatic acinar cells. Effects of Ca2+, guanosine 5'-[gamma-thio]triphosphate, cyclic AMP, tetanus toxin and botulinum A toxin

    Get PDF
    The molecular requirements for amylase release and the intracellular effects of botulinum A toxin and tetanus toxin on amylase release were investigated using rat pancreatic acinar cells permeabilized with streptolysin O. Micromolar concentrations of free Ca2+ evoked amylase release from these cells. Maximal release was observed in the presence of 30 microM free Ca2+. Ca(2+)-stimulated, but not basal, amylase release was enhanced by guanosine 5'-[gamma-thio]triphosphate (GTP[S]) (3-4 fold) or cyclic AMP (1.5-2 fold). Neither the two-chain forms of botulinum A toxin and tetanus toxin, under reducing conditions, nor the light chains of tetanus toxin, inhibited amylase release triggered by Ca2+, or combinations of Ca2+ + GTP[S] or Ca2+ + cAMP. The lack of inhibition was not due to inactivation of botulinum A toxin or tetanus toxin by pancreatic acinar cell proteolytic enzymes, as toxins previously incubated with permeabilized pancreatic acinar cells inhibited Ca(2+)-stimulated [3H]noradrenaline release from streptolysin O-permeabilized adrenal chromaffin cells. These data imply that clostridial neurotoxins inhibit a Ca(2+)-dependent mechanism which promotes exocytosis in neural and endocrine cells, but not in exocrine cells

    Ca2+-Stimulated Catecholamine Release from alpha-Toxin Permeabilized PC12 Cells

    Get PDF
    Two possible cellular pathways of catecholamines from the chromaffin vesicles of PC 12 cells to the surrounding medium are explored in this study. The direct one circumventing the cytoplasm can be activated in a-toxin-permeabilized cells with micromolar levels of free Ca2+. Catecholamine metabolites formed in the cytoplasm (i.e., 3,4-dihydroxyphenylacetic acid and 3,4-dihydroxyphenylethanol) are neither formed nor released from the cells under these conditions. However, when vesicular catecholamines were discharged into the cytoplasm by addition of the ionophore nigericin, such metabolites are formed and released into the medium independent of Ca2+. Both types of experiments provide direct evidence for the operation of Ca2+-induced exocytosis of dopamine and noradrenaline in permeabilized PC12 cells. The Ca2+ dependence of dopamine or noradrenaline release, as measured by the determination of the endogenous catecholamines using the high-performance liquid chromatography technique, exhibits two different phases. One is already activated below 1 pM free Ca2+ and plateaus at 1-5 pM free Ca2+, while a second occurs in the presence of larger amounts of free Ca2+ (10-100 pM). Ca2+-induced catecholamine release from the permeabilized cells can be modulated in different ways: It is enhanced by the phorbol ester 12-0-tetradecanoylphorbol 13-acetate and the diacylglycerol 1 -oleyl-2-acetylglycerol provided Mg*+/ATP is present, and it is inhibited by guanosine 5’-0-(3-thiotriphosphate). The latter effect is abolished by pretreatment of the cells with pertussis toxin but not by cholera toxin. Thus, it appears that Ca2+-induced exocytosis can be modulated via the protein kinase C system, as well as via GTP binding proteins
    • …
    corecore