8 research outputs found

    Experimental Tests of General Relativity

    Full text link
    Einstein's general theory of relativity is the standard theory of gravity, especially where the needs of astronomy, astrophysics, cosmology and fundamental physics are concerned. As such, this theory is used for many practical purposes involving spacecraft navigation, geodesy, and time transfer. Here I review the foundations of general relativity, discuss recent progress in the tests of relativistic gravity in the solar system, and present motivations for the new generation of high-accuracy gravitational experiments. I discuss the advances in our understanding of fundamental physics that are anticipated in the near future and evaluate the discovery potential of the recently proposed gravitational experiments.Comment: revtex4, 30 pages, 10 figure

    The Confrontation between General Relativity and Experiment

    Get PDF
    The status of experimental tests of general relativity and of theoretical frameworks for analysing them is reviewed. Einstein's equivalence principle (EEP) is well supported by experiments such as the Eotvos experiment, tests of special relativity, and the gravitational redshift experiment. Future tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, and the Nordtvedt effect in lunar motion. Gravitational-wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor binary pulsar, and other binary pulsar systems have yielded other tests, especially of strong-field effects. When direct observation of gravitational radiation from astrophysical sources begins, new tests of general relativity will be possible.Comment: 89 pages, 8 figures; an update of the Living Review article originally published in 2001; final published version incorporating referees' suggestion

    The Confrontation between General Relativity and Experiment

    Full text link

    Are the fundamental forces four, or more?

    No full text

    Fundamental forces: Are there more than four?

    No full text
    corecore