267 research outputs found

    Whole-exome sequencing in relapsing chronic lymphocytic leukemia: clinical impact of recurrent RPS15 mutations

    Get PDF
    Fludarabine, cyclophosphamide and rituximab (FCR) is first-line treatment for medically fit chronic lymphocytic leukemia (CLL) patients, however despite good response rates many patients eventually relapse. Whilst recent high-throughput studies have identified novel recurrent genetic lesions in adverse-prognostic CLL, the mechanisms leading to relapse after FCR therapy are not completely understood. To gain insight into this issue, we performed whole-exome sequencing of sequential samples from 41 CLL patients who were uniformly treated with FCR but relapsed after a median of 2 years. In addition to mutations with known adverse-prognostic impact (TP53, NOTCH1, ATM, SF3B1, NFKBIE, BIRC3) a large proportion of cases (19.5%) harbored mutations in RPS15, a gene encoding a component of the 40S ribosomal subunit. Extended screening, totaling 1119 patients, supported a role for RPS15 mutations in aggressive CLL, with one-third of RPS15-mutant cases also carrying TP53 aberrations. In most cases selection of dominant, relapse-specific subclones was observed over time. However, RPS15 mutations were clonal prior to treatment and remained stable at relapse. Notably, all RPS15 mutations represented somatic missense variants and resided within a 7 amino-acid evolutionarily conserved region. We confirmed the recently postulated direct interaction between RPS15 and MDM2/MDMX and transient expression of mutant RPS15 revealed defective regulation of endogenous p53 compared to wildtype RPS15. In summary, we provide novel insights into the heterogeneous genetic landscape of CLL relapsing after FCR treatment and highlight a novel mechanism underlying clinical aggressiveness involving a mutated ribosomal protein, potentially representing an early genetic lesion in CLL pathobiology

    Dissecting Allele Architecture of Early Onset IBD Using High-Density Genotyping

    Get PDF
    BACKGROUND: The inflammatory bowel diseases (IBD) are common, complex disorders in which genetic and environmental factors are believed to interact leading to chronic inflammatory responses against the gut microbiota. Earlier genetic studies performed in mostly adult population of European descent identified 163 loci affecting IBD risk, but most have relatively modest effect sizes, and altogether explain only ~20% of the genetic susceptibility. Pediatric onset represents about 25% of overall incident cases in IBD, characterized by distinct disease physiology, course and risks. The goal of this study is to compare the allelic architecture of early onset IBD with adult onset in population of European descent. METHODS: We performed a fine mapping association study of early onset IBD using high-density Immunochip genotyping on 1008 pediatric-onset IBD cases (801 Crohn\u27s disease; 121 ulcerative colitis and 86 IBD undetermined) and 1633 healthy controls. Of the 158 SNP genotypes obtained (out of the 163 identified in adult onset), this study replicated 4% (5 SNPs out of 136) of the SNPs identified in the Crohn\u27s disease (CD) cases and 0.8% (1 SNP out of 128) in the ulcerative colitis (UC) cases. Replicated SNPs implicated the well known NOD2 and IL23R. The point estimate for the odds ratio (ORs) for NOD2 was above and outside the confidence intervals reported in adult onset. A polygenic liability score weakly predicted the age of onset for a larger collection of CD cases (p\u3c 0.03, R2= 0.007), but not for the smaller number of UC cases. CONCLUSIONS: The allelic architecture of common susceptibility variants for early onset IBD is similar to that of adult onset. This immunochip genotyping study failed to identify additional common variants that may explain the distinct phenotype that characterize early onset IBD. A comprehensive dissection of genetic loci is necessary to further characterize the genetic architecture of early onset IBD

    Psychosocial Screening in Disorders/Differences of Sex Development: Psychometric Evaluation of the Psychosocial Assessment Tool

    Get PDF
    © 2019 S. Karger AG, Basel. Background/Aims: Utilization of a psychosocial screener to identify families affected by a disorder/difference of sex development (DSD) and at risk for adjustment challenges may facilitate efficient use of team resources to optimize care. The Psychosocial Assessment Tool (PAT) has been used in other pediatric conditions. The current study explored the reliability and validity of the PAT (modified for use within the DSD population; PAT-DSD). Methods: Participants were 197 families enrolled in the DSD-Translational Research Network (DSD-TRN) who completed a PAT-DSD during a DSD clinic visit. Psychosocial data were extracted from the DSD-TRN clinical registry. Internal reliability of the PAT-DSD was tested using the Kuder-Richardson-20 coefficient. Validity was examined by exploring the correlation of the PAT-DSD with other measures of caregiver distress and child emotional-behavioral functioning. Results: One-third of families demonstrated psychosocial risk (27.9% Targeted and 6.1% Clinical level of risk). Internal reliability of the PAT-DSD Total score was high (α = 0.86); 4 of 8 subscales met acceptable internal reliability. A priori predicted relationships between the PAT-DSD and other psychosocial measures were supported. The PAT-DSD Total score related to measures of caregiver distress (r = 0.40, p \u3c 0.001) and to both caregiver-reported and patient self-reported behavioral problems (r = 0.61, p \u3c 0.00; r = 0.37, p \u3c 0.05). Conclusions: This study provides evidence for the reliability and validity of the PAT-DSD. Given variability in the internal reliability across subscales, this measure is best used to screen for overall family risk, rather than to assess specific psychosocial concerns
    corecore