18 research outputs found
Controlled enhancement of spin-current emission by three-magnon splitting
Spin currents—the flow of angular momentum without the simultaneous transfer of electrical charge—play an enabling role in the field of spintronics1, 2, 3, 4, 5, 6, 7, 8. Unlike the charge current, the spin current is not a conservative quantity within the conduction carrier system. This is due to the presence of the spin–orbit interaction that couples the spin of the carriers to angular momentum in the lattice. This spin–lattice coupling9 acts also as the source of damping in magnetic materials, where the precessing magnetic moment experiences a torque towards its equilibrium orientation; the excess angular momentum in the magnetic subsystem flows into the lattice. Here we show that this flow can be reversed by the three-magnon splitting process and experimentally achieve the enhancement of the spin current emitted by the interacting spin waves. This mechanism triggers angular momentum transfer from the lattice to the magnetic subsystem and modifies the spin-current emission. The finding illustrates the importance of magnon–magnon interactions for developing spin-current based electronics
The Ginzburg-Landau model of Bose-Einstein condensation of magnons
We introduce a system of phenomenological equations for Bose-Einstein
condensates of magnons in the one-dimensional setting. The nonlinearly coupled
equations, written for amplitudes of the right-and left-traveling waves,
combine basic features of the Gross-Pitaevskii and complex Ginzburg-Landau
models. They include localized source terms, to represent the microwave
magnon-pumping field. With the source represented by the -functions,
we find analytical solutions for symmetric localized states of the magnon
condensates. We also predict the existence of asymmetric states with unequal
amplitudes of the two components. Numerical simulations demonstrate that all
analytically found solutions are stable. With the -function terms
replaced by broader sources, the simulations reveal a transition from the
single-peak stationary symmetric states to multi-peak ones, generated by the
modulational instability of extended nonlinear-wave patterns. In the
simulations, symmetric initial conditions always converge to symmetric
stationary patterns. On the other hand, asymmetric inputs may generate
nonstationary asymmetric localized solutions, in the form of traveling or
standing waves. Comparison with experimental results demonstrates that the
phenomenological equations provide for a reasonably good model for the
description of the spatiotemporal dynamics of magnon condensates.Comment: Physical Review B, in pres
Chiral charge pumping in graphene deposited on a magnetic insulator
We demonstrate that a sizable chiral charge pumping can be achieved at room
temperature in graphene/Yttrium Iron Garnet (YIG) bilayer systems. The effect,
which cannot be attributed to the ordinary spin pumping, reveals itself in the
creation of a dc electric field/voltage in graphene as a response to the
dynamic magnetic excitations (spin waves) in an adjacent out-of-plane
magnetized YIG film. We show that the induced voltage changes its sign when the
orientation of the static magnetization is reversed, clearly indicating the
broken spatial inversion symmetry in the studied system. The strength of effect
shows a non-monotonous dependence on the spin-wave frequency, in agreement with
the proposed theoretical model.Comment: 8 pages, 5 figure
Bose-Einstein condensation of magnons under incoherent pumping
Bose-Einstein condensation in a gas of magnons pumped by an incoherent
pumping source is experimentally studied at room temperature. We demonstrate
that the condensation can be achieved in a gas of bosons under conditions of
incoherent pumping. Moreover, we show the critical transition point is almost
independent of the frequency spectrum of the pumping source and is solely
determined by the density of magnons. The electromagnetic power radiated by the
magnon condensate was found to scale quadratically with the pumping power,
which is in accordance with the theory of Bose-Einstein condensation in magnon
gases
Growth hormone and connective tissue in exercise
Contains fulltext :
158765.pdf (publisher's version ) (Closed access
Magnon-magnon interactions in a room-temperature magnonic bose-einstein condensate
Contains fulltext :
177810.pdf (publisher's version ) (Open Access)6 p
Spin Hall-induced auto-oscillations in ultrathin YIG grown on Pt
Abstract We experimentally study nanowire-shaped spin-Hall nano-oscillators based on nanometer-thick epitaxial films of Yttrium Iron Garnet grown on top of a layer of Pt. We show that, although these films are characterized by significantly larger magnetic damping in comparison with the films grown directly on Gadolinium Gallium Garnet, they allow one to achieve spin current-driven auto-oscillations at comparable current densities, which can be an indication of the better transparency of the interface to the spin current. These observations suggest a route for improvement of the flexibility of insulator-based spintronic devices and their compatibility with semiconductor technology