14 research outputs found

    Resequencing microarray probe design for typing genetically diverse viruses: human rhinoviruses and enteroviruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Febrile respiratory illness (FRI) has a high impact on public health and global economics and poses a difficult challenge for differential diagnosis. A particular issue is the detection of genetically diverse pathogens, i.e. human rhinoviruses (HRV) and enteroviruses (HEV) which are frequent causes of FRI. Resequencing Pathogen Microarray technology has demonstrated potential for differential diagnosis of several respiratory pathogens simultaneously, but a high confidence design method to select probes for genetically diverse viruses is lacking.</p> <p>Results</p> <p>Using HRV and HEV as test cases, we assess a general design strategy for detecting and serotyping genetically diverse viruses. A minimal number of probe sequences (26 for HRV and 13 for HEV), which were potentially capable of detecting all serotypes of HRV and HEV, were determined and implemented on the Resequencing Pathogen Microarray RPM-Flu v.30/31 (<it>Tessarae RPM-Flu</it>). The specificities of designed probes were validated using 34 HRV and 28 HEV strains. All strains were successfully detected and identified at least to species level. 33 HRV strains and 16 HEV strains could be further differentiated to serotype level.</p> <p>Conclusion</p> <p>This study provides a fundamental evaluation of simultaneous detection and differential identification of genetically diverse RNA viruses with a minimal number of prototype sequences. The results demonstrated that the newly designed RPM-Flu v.30/31 can provide comprehensive and specific analysis of HRV and HEV samples which implicates that this design strategy will be applicable for other genetically diverse viruses.</p

    Assessment of methods and analysis of outcomes for comprehensive optimization of nucleofection

    No full text
    BACKGROUND: Nucleofection is an emerging technology for delivery of nucleic acids into both the cytoplasm and nucleus of eukaryotic cells with high efficiency. This makes it an ideal technology for gene delivery and siRNA applications. A 96-well format has recently been made available for high-throughput nucleofection, however conditions must be optimized for delivery into each specific cell type. Screening each 96-well plate can be expensive, and descriptions of methods and outcomes to determine the best conditions are lacking in the literature. Here we employ simple methods, including cell counting, microscopy, viability and cytotoxicity assays to describe the minimal experimental methods required to optimize nucleofection conditions for a given cell line. METHODS: We comprehensively measured and analyzed the outcomes of the 96-well nucleofection of pmaxGFP plasmids encoding green fluorescent protein (GFP) into the A-549 human lung epithelial cell line. Fluorescent microscopy and a plate reader were used to respectively observe and quantify green fluorescence in both whole and lysed cells. Cell viability was determined by direct counting/permeability assays, and by both absorbance and fluorescence-based plate reader cytotoxicity assays. Finally, an optimal nucleofection condition was used to deliver siRNA and gene specific knock-down was demonstrated. RESULTS: GFP fluorescence among conditions ranged from non-existent to bright, based upon the fluorescent microscopy and plate reader results. Correlation between direct counting of cells and plate-based cytotoxicity assays were from R = .81 to R = .88, depending on the assay. Correlation between the GFP fluorescence of lysed and unlysed cells was high, ranging from R = .91 to R = .97. Finally, delivery of a pooled sample of siRNAs targeting the gene relA using an optimized nucleofection condition resulted in a 70–95% knock down of the gene over 48 h with 90–97% cell viability. CONCLUSION: Our results show the optimal 96-well nucleofection conditions for the widely-used human cell line, A-549. We describe simple, effective methods for determining optimal conditions with high confidence, providing a useful road map for other laboratories planning optimization of specific cell lines or primary cells. Our analysis of outcomes suggests the need to only measure unlysed, whole-cell fluorescence and cell metabolic activity using a plate reader cytotoxicity assay to determine the best conditions for 96-well nucleofection

    Effects of Globin mRNA Reduction Methods on Gene Expression Profiles from Whole Blood

    No full text
    Excessive globin mRNA in whole blood RNA decreases transcript detection sensitivity and increases signal variation on microarrays. Hence, methods based on peptide nucleic acid inhibitory oligos and biotinylated DNA capture oligos have been developed to reduce globin mRNA. However, there is limited information about the effects of these two methods on gene expression profiles. Thus, we systematically compared the facility and effects of the two globin reduction methods on profile measurements from Jurkat cell line RNA with or without spiked globin mRNA and human blood RNA isolated using PAXgene collection tubes. We showed that the methods were efficient at increasing the sensitivity of transcript detection without loss of specificity, but neither method could recover a profile equivalent to that of an identical RNA sample without globin mRNA excesses. The capture oligo method had slightly better transcript detection sensitivity for cell line RNA, lowered signal variation for PAXgene RNA, and more similar profiles to controls than the inhibitory method. However, the capture method required larger amounts of initial high-quality RNA to yield sufficient cRNA amounts, and its procedures were more complex and time consuming than the inhibitory method. These results inform the selection of methods suitable for multicenter surveillance of gene expression profiles

    Monitoring viral RNA in infected cells with LNA flow-FISH

    No full text
    We previously showed the feasibility of using locked nucleic acid (LNA) for flow cytometric–fluorescence in situ hybridization (LNA flow-FISH) detection of a target cellular mRNA. Here we demonstrate how the method can be used to monitor viral RNA in infected cells. We compared the results of the LNA flow-FISH with other methods of quantifying virus replication, including the use of an enhanced green fluorescent protein (EGFP) viral construct and quantitative reverse-transcription polymerase chain reaction. We found that an LNA probe complementary to Sindbis virus RNA is able to track the increase in viral RNA over time in early infection. In addition, this method is comparable to the EGFP construct in sensitivity, with both peaking around 3 h and at the same level of infected cells. Finally, we observed that the LNA flow-FISH method responds to the decrease in levels of viral RNA caused by antiviral medication. This technique represents a straightforward way to monitor viral infection in cells and is easily applicable to any virus

    Use of Oligonucleotide Microarrays for Rapid Detection and Serotyping of Acute Respiratory Disease-Associated Adenoviruses

    No full text
    The cessation of the adenovirus vaccination program for military trainees has resulted in several recent acute respiratory disease (ARD) outbreaks. In the absence of vaccination, rapid detection methods are necessary for the timely implementation of measures to prevent adenovirus transmission within military training facilities. To this end, we have combined a fluorogenic real-time multiplex PCR assay with four sets of degenerate PCR primers that target the E1A, fiber, and hexon genes with a long oligonucleotide microarray capable of identifying the most common adenovirus serotypes associated with adult respiratory tract infections (serotypes 3, 4, 7, 16, and 21) and a representative member of adenovirus subgroup C (serotype 6) that is a common cause of childhood ARD and that often persists into adulthood. Analyses with prototype strains demonstrated unique hybridization patterns for representative members of adenovirus subgroups B(1), B(2), C, and E, thus allowing serotype determination. Microarray-based sensitivity assessments revealed lower detection limits (between 1 and 100 genomic copies) for adenovirus serotype 4 (Ad4) and Ad7 cell culture lysates, clinical nasal washes, and throat swabs and purified DNA from clinical samples. When adenovirus was detected from coded clinical samples, the results obtained by this approach demonstrated an excellent concordance with those obtained by the more established method of adenovirus identification as well as by cell culture with fluorescent-antibody staining. Finally, the utility of this method was further supported by its ability to detect adenoviral coinfections, contamination, and, potentially, recombination events. Taken together, the results demonstrate the usefulness of the simple and rapid diagnostic method developed for the unequivocal identification of ARD-associated adenoviral serotypes from laboratory or clinical samples that can be completed in 1.5 to 4.0 h

    Air pollution and admissions for acute lower respiratory infections in young children of Ho Chi Minh City

    No full text
    This study assessed the effects of exposure to air pollution on hospitalization for acute lower respiratory infection (ALRI) among children under 5 years of age in Ho Chi Minh City (HCMC) from 2003 to 2005. Case-crossover analyses with time-stratified selection of control periods were conducted using daily admissions for pneumonia and bronchiolitis and daily, citywide averages of PM 10, NO 2, SO 2, and O 3 (8-h maximum average) estimated from the local air quality monitoring network. Increased concentrations of NO 2 and SO 2 were associated with increased admissions in the dry season (November to April), with excess risks of 8.50% (95%CI 0.80-16.79) and 5.85% (95%CI 0.44-11.55), respectively. PM 10 could also be associated with increased admissions in the dry season, but high correlation between PM 10 and NO 2 (0.78) limits our ability to distinguish between PM 10 and NO 2 effects. In the rainy season (May-October), negative associations between pollutants and admissions were observed. Results of this first study of the health effects of air pollution in HCMC support the presence of an association between combustion-source pollution and increased ALRI admissions. ALRI admissions were generally positively associated with ambient levels of PM 10, NO 2, and SO 2 during the dry season, but not the rainy season. Negative results in the rainy season could be driven by residual confounding present from May to October. Preliminary exploratory analyses suggested that seasonal differences in the prevalence of viral causes of ALRI could be driving the observed differences in effects by season. © 2011 Springer Science+Business Media B.V.link_to_subscribed_fulltex

    RNA hydrolysis and inhibition of translation by a Co(III)–cyclen complex

    No full text
    Metal ion-chelator catalysts based on main-group, lanthanide, or transition metal complexes have been developed as nonenzymatic alternatives for the hydrolysis of the phosphodiester bonds in DNA and RNA. Cobalt (III), with its high-charge density, is known for its ability to hydrolyze phosphodiesters with rate constants as high as 2 × 10(−4) s(−1). We have developed a kinetically inert Co(III)-cyclen-based complex, Co(III)–cycmmb that is very potent in inhibiting the translation of RNA into protein. Contact time as short as 10 min is sufficient to achieve the complete inhibition of the translation of a concentrated luciferase RNA solution into the enzyme in a cell-free translation system. The inhibition appears to proceed through two pathways. The first pathway involves the kinetic or substitutional inertness of Co(III) for the RNA template at short contact times. This interaction is mediated through the kinetic inertness of Co(III) for the phosphate groups of the nucleotides, as well as coordination of Co(III) to the nitrogenous bases. The second pathway occurs at longer contact times and is mediated by the hydrolysis of the phosphodiester backbone. This report represents the first demonstrated use of a metal–chelate complex to achieve the inhibition of the translation of RNA into protein. This Co(III) system can be useful in its present nonsequence-specific form as a novel viral decontamination agent. When functionalized to recognize specific nucleic acid sequences, such a system could potentially be used in gene-silencing applications as an alternative to standard antisense or RNAi technologies
    corecore