62 research outputs found
Quantitative estimation of localization errors of 3 d transition metal pseudopotentials in diffusion Monte Carlo
The necessarily approximate evaluation of non-local pseudopotentials in diffusion Monte Carlo (DMC) introduces localization errors. We estimate these errors for two families of non-local pseudopotentials for the first-row transition metal atoms Sc-Zn using an extrapolation scheme and multideterminant wavefunctions. Sensitivities of the error in the DMC energies to the Jastrow factor are used to estimate the quality of two sets of pseudopotentials with respect to locality error reduction. The locality approximation and T-moves scheme are also compared for accuracy of total energies. After estimating the removal of the locality and T-moves errors, we present the range of fixed-node energies between a single determinant description and a full valence multideterminant complete active space expansion. The results for these pseudopotentials agree with previous findings that the locality approximation is less sensitive to changes in the Jastrow than T-moves yielding more accurate total energies, however not necessarily more accurate energy differences. For both the locality approximation and T-moves, we find decreasing Jastrow sensitivity moving left to right across the series Sc-Zn. The recently generated pseudopotentials of Krogel et al. [Phys. Rev. B 93, 075143 (2016)] reduce the magnitude of the locality error compared with the pseudopotentials of Burkatzki et al. [J. Chem. Phys. 129, 164115 (2008)] by an average estimated 40% using the locality approximation. The estimated locality error is equivalent for both sets of pseudopotentials when T-moves is used. For the Sc-Zn atomic series with these pseudopotentials, and using up to three-body Jastrow factors, our results suggest that the fixed-node error is dominant over the locality error when a single determinant is used
MnNiO3 revisited with modern theoretical and experimental methods
MnNiO3 is a strongly correlated transition metal oxide that has recently been investigated theoretically for its potential application as an oxygen-evolution photocatalyst. However, there is no experimental report on critical quantities such as the band gap or bulk modulus. Recent theoretical predictions with standard functionals such as LDA+U and HSE show large discrepancies in the band gaps (about 1.23 eV), depending on the nature of the functional used. Hence there is clearly a need for an accurate quantitative prediction of the band gap to gauge its utility as a photocatalyst. In this work, we present a diffusion quantum Monte Carlo study of the bulk properties of MnNiO3 and revisit the synthesis and experimental properties of the compound. We predict quasiparticle band gaps of 2.0(5) eV and 3.8(6) eV for the majority and minority spin channels, respectively, and an equilibrium volume of 92.8 Ă…3, which compares well to the experimental value of 94.4 Ă…3. A bulk modulus of 217 GPa is predicted for MnNiO3. We rationalize the difficulty for the formation of ordered ilmenite-type structure with specific sites for Ni and Mn to be potentially due to the formation of antisite defects that form during synthesis, which ultimately affects the physical properties of MnNiO3
Supercritical fluid extraction of Eucalyptus globulus bark: a promising approach for triterpenoid production
Eucalyptus bark contains significant amounts of triterpenoids with demonstrated bioactivity, namely triterpenic acids and their acetyl derivatives (ursolic, betulinic, oleanolic, betulonic, 3-acetylursolic, and 3-acetyloleanolic acids). In this work, the supercritical fluid extraction (SFE) of Eucalyptus globulus deciduous bark was carried out with pure and modified carbon dioxide to recover this fraction, and the results were compared with those obtained by Soxhlet extraction with dichloromethane. The effects of pressure (100-200 bar), co-solvent (ethanol) content (0, 5 and 8% wt), and multistep operation were studied in order to evaluate the applicability of SFE for their selective and efficient production. The individual extraction curves of the main families of compounds were measured, and the extracts analyzed by GC-MS. Results pointed out the influence of pressure and the important role played by the co-solvent. Ethanol can be used with advantage, since its effect is more important than increasing pressure by several tens of bar. At 160 bar and 40 degrees C, the introduction of 8% (wt) of ethanol greatly improves the yield of triterpenoids more than threefold
Maslinic Acid, a Natural Triterpene, Induces a Death Receptor-Mediated Apoptotic Mechanism in Caco-2 p53-Deficient Colon Adenocarcinoma Cells
Maslinic acid (MA) is a natural triterpene present in high concentrations in the waxy skin of olives. We have previously reported that MA induces apoptotic cell death via the mitochondrial apoptotic pathway in HT29 colon cancer cells. Here, we show that MA induces apoptosis in Caco-2 colon cancer cells via the extrinsic apoptotic pathway in a dose-dependent manner. MA triggered a series of effects associated with apoptosis, including the cleavage of caspases -8 and -3, and increased the levels of t-Bid within a few hours of its addition to the culture medium. MA had no effect on the expression of the Bax protein, release of cytochrome-c or on the mitochondrial membrane potential. This suggests that MA triggered the extrinsic apoptotic pathway in this cell type, as opposed to the intrinsic pathway found in the HT29 colon-cancer cell line. Our results suggest that the apoptotic mechanism induced in Caco-2 may be different from that found in HT29 colon-cancer cells, and that in Caco-2 cells MA seems to work independently of p53. Natural antitumoral agents capable of activating both the extrinsic and intrinsic apoptotic pathways could be of great use in treating colon-cancer of whatever origin.This study was supported by grants Group BIO 157 from the Technology and Innovation Council of the Andalucian regional government and AGL2006-12210-C03-02/ALI, SAF2005-01627, ISCIII-RTICC (RD06/0020/0046) from the Spanish government and European Union FEDER funds
Triterpenoid modulation of IL-17 and Nrf-2 expression ameliorates neuroinflammation and promotes remyelination in autoimmune encephalomyelitis
Inflammatory cytokines and endogenous anti-oxidants are variables affecting disease progression in multiple sclerosis (MS). Here we demonstrate the dual capacity of triterpenoids to simultaneously repress production of IL-17 and other pro-inflammatory mediators while exerting neuroprotective effects directly through Nrf2-dependent induction of anti-oxidant genes. Derivatives of the natural triterpene oleanolic acid, namely CDDO-trifluoroethyl-amide (CDDO-TFEA), completely suppressed disease in a murine model of MS, experimental autoimmune encephalomyelitis (EAE), by inhibiting Th1 and Th17 mRNA and cytokine production. Encephalitogenic T cells recovered from treated mice were hypo-responsive to myelin antigen and failed to adoptively transfer the disease. Microarray analyses showed significant suppression of pro-inflammatory transcripts with concomitant induction of anti-inflammatory genes including Ptgds and Hsd11b1. Finally, triterpenoids induced oligodendrocyte maturation in vitro and enhanced myelin repair in an LPC-induced non-inflammatory model of demyelination in vivo. These results demonstrate the unique potential of triterpenoid derivatives for the treatment of neuroinflammatory disorders such as MS
The Mechanism of Carbon Dioxide Adsorption in an Alkylamine-Functionalized Metal–Organic Framework
CrI3 revisited with a many-body ab initio theoretical approach
CrI3 has recently been shown to exhibit low-dimensional, long-range magnetic ordering from few layers to single layers of CrI3. The properties of CrI3 bulk and few-layered systems are uniquely defined by a combination of short-range intralayer and long-range interlayer interactions, including strong correlations, exchange, and spin-orbit coupling. Unfortunately, both the long-range van der Waals interactions, which are driven by dynamic, many-body electronic correlations, and the competing strong intralayer correlations, present a formidable challenge for the local or semilocal mean-field approximations employed in workhorse electronic structure approaches like density-functional theory. In this paper we employ a sophisticated many-body approach that can simultaneously describe long- and short-range correlations. We establish that the fixed-node diffusion Monte Carlo (FNDMC) method reproduces the experimental interlayer separation distance of bulk CrI3 for the high-temperature monoclinic phase with a reliable prediction of the interlayer binding energy. We subsequently employed the FNDMC results to benchmark the accuracy of several density-functional theory exchange-correlation approximations
- …