6 research outputs found

    Genetic intersection between dystonia and neurodevelopmental disorders: Insights from genomic sequencing.

    No full text
    Animal and human brain-imaging studies have suggested a role for neurodevelopmental abnormalities in the pathophysiology of dystonia. Variants in neurodevelopmental genes have also been sporadically implicated, although no systematic investigation has been undertaken before the more widespread availability of genome-wide sequencing techniques. Here, we review findings from recent whole-exome and whole-genome sequencing approaches in individuals with dystonic conditions, indicating that more than 50% of molecularly diagnosed cases may have variants in neurodevelopmental disorder-associated genes. We describe how genomic sequencing has contributed to phenotypic expansions of several known hereditary forms of dystonia to include classical neurodevelopmental features. Moreover, we demonstrate that many of the newly reported monogenic neurodevelopmental disorders can manifest with prominent dystonic presentations, including isolated generalized dystonia, paroxysmal dystonia, and dopa-responsive dystonia-parkinsonism. Considering the published evidence, we argue that the clinical feature dystonia might be regarded as an expression of developmental brain dysfunction, a status referring to the common etiological basis of many neurodevelopmental disease traits. Finally, we provide a view into clinical implications, including the necessity to integrate the interrogation of neurodevelopmental disorder-associated genes into the molecular analysis process of patients with dystonia. Recognizing the relationship between dystonia and neurodevelopmental disorders is important to improve patient counseling and management and develop novel therapeutic strategies

    Correction to: Myoclonic dystonia phenotype related to a novel calmodulin-binding transcription activator 1 sequence variant.

    No full text
    The affiliation of author Robert Jech was incorrectly indicated in the originally published version of this paper

    Myoclonic dystonia phenotype related to a novel calmodulin-binding transcription activator 1 sequence variant.

    No full text
    Intragenic rearrangements and sequence variants in the calmodulin-binding transcription activator 1 gene (CAMTA1) can result in a spectrum of clinical presentations, most notably congenital ataxia with or without intellectual disability. We describe for the first time a myoclonic dystonia-predominant phenotype associated with a novel CAMTA1 sequence variant. Furthermore, by identifying an additional, recurrent CAMTA1 sequence variant in an individual with a more typical neurodevelopmental disease manifestation, we contribute to the elucidation of phenotypic variability associated with CAMTA1 gene mutations

    Dystonia as a prominent presenting feature in developmental and epileptic encephalopathies: A case series.

    No full text
    Introduction: Although there has been increasing recognition of the occurrence of non-epileptic involuntary movements in developmental and epileptic encephalopathies (DEEs), the spectrum of dystonic presentations associated with these conditions remains poorly described. We sought to expand the catalogue of dystonia-predominant phenotypes in monogenic DEEs, building on the recently introduced concept of an epilepsy-movement disorder spectrum. Methods: Cases were identified from a whole-exome-sequenced cohort of 45 pediatric index patients with complex dystonia (67% sequenced as parent-child trios). Review of molecular findings in DEE-associated genes was performed. For five individuals with identified DEE-causing variants, detailed information about presenting phenotypic features and the natural history of disease was obtained. Results: De-novo pathogenic and likely pathogenic missense variants in GABRA1, GABBR2, GNAO1, and FOXG1 gave rise to infantile-onset persistent and paroxysmal dystonic manifestations, beginning in the limb or truncal musculature and progressing gradually to a generalized state. Coexisting, less prominent movement-disorder symptoms were observed and included myoclonic, ballistic, and stereotypic abnormal movements as well as choreoathetosis. Dystonia dominated over epileptic neurodevelopmental comorbidities in all four subjects and represented the primary indication for molecular genetic analysis. We also report the unusual case of an adult female patient with dystonia, tremor, and mild learning disability who was found to harbor a pathogenic frameshift variant in MECP2. Conclusions: Dystonia can be a leading clinical manifestation in different DEEs. A monogenic basis of disease should be considered on the association of dystonia and developmental delay-epilepsy presentations, justifying a molecular screening for variants in DEE-associated genes

    Recessive <em>NUP54</em> variants underlie early-onset dystonia with striatal lesions.

    Get PDF
    Infantile striatonigral degeneration is caused by a homozygous variant of the nuclear-pore complex (NPC) gene NUP62, involved in nucleo-cytoplasmic trafficking. By querying sequencing-datasets of patients with dystonia and/or Leigh(-like) syndromes, we identified three unrelated individuals with biallelic variants in NUP54. All variants clustered in the C-terminal protein region that interacts with NUP62. Associated phenotypes were similar to those of NUP62-related disease, including early-onset dystonia with dysphagia, choreoathetosis, and T2-hyperintense lesions in striatum. In-silico and protein-biochemical studies gave further evidence for the argument that the variants were pathogenic. We expand the spectrum of NPC component-associated dystonic conditions with localized basal-ganglia abnormalities

    Genetic overlap between dystonia and other neurologic disorders: A study of 1,100 exomes.

    No full text
    INTRODUCTION: Although shared genetic factors have been previously reported between dystonia and other neurologic conditions, no sequencing study exploring such links is available. In a large dystonic cohort, we aimed at analyzing the proportions of causative variants in genes associated with disease categories other than dystonia. METHODS: Gene findings related to whole-exome sequencing-derived diagnoses in 1100 dystonia index cases were compared with expert-curated molecular testing panels for ataxia, parkinsonism, spastic paraplegia, neuropathy, epilepsy, and intellectual disability. RESULTS: Among 220 diagnosed patients, 21% had variants in ataxia-linked genes; 15% in parkinsonism-linked genes; 15% in spastic-paraplegia-linked genes; 12% in neuropathy-linked genes; 32% in epilepsy-linked genes; and 65% in intellectual-disability-linked genes. Most diagnosed presentations (80%) were related to genes listed in ≥1 studied panel; 71% of the involved loci were found in the non-dystonia panels but not in an expert-curated gene list for dystonia. CONCLUSIONS: Our study indicates a convergence in the genetics of dystonia and other neurologic phenotypes, informing diagnostic evaluation strategies and pathophysiological considerations
    corecore