4 research outputs found

    What we can and what we cannot see with extracellular multielectrodes.

    No full text
    Extracellular recording is an accessible technique used in animals and humans to study the brain physiology and pathology. As the number of recording channels and their density grows it is natural to ask how much improvement the additional channels bring in and how we can optimally use the new capabilities for monitoring the brain. Here we show that for any given distribution of electrodes we can establish exactly what information about current sources in the brain can be recovered and what information is strictly unobservable. We demonstrate this in the general setting of previously proposed kernel Current Source Density method and illustrate it with simplified examples as well as using evoked potentials from the barrel cortex obtained with a Neuropixels probe and with compatible model data. We show that with conceptual separation of the estimation space from experimental setup one can recover sources not accessible to standard methods

    Chronic fluoxetine treatment impairs motivation and reward learning by affecting neuronal plasticity in the central amygdala

    Full text link
    Background and Purpose The therapeutic effects of fluoxetine (FLX) are believed to be due to its potency for increasing neuronal plasticity and reversing some learning deficits. Nevertheless, a growing amount of evidence shows the adverse effects of the drug on cognition and some forms of neuronal plasticity. EXPERIMENTAL APPROACH To study the effects of chronic FLX treatment we combine an automated assessment of motivation and learning in mice with an investigation of various forms of neuronal plasticity in the central (CeA) and basolateral amygdala (BLA). We use immunohistochemistry to visualize neuronal types and perineuronal nets (PNN), and DI-staining to assess dendritic spine morphology. Gel zymography is used to test FLX's impact on matrix metalloproteinase-9 (MMP-9), an enzyme involved in synaptic plasticity. KEY RESULTS We show that chronic FLX treatment in non-stressed mice increases PNN-dependent plasticity in the BLA, while simultaneously impairing MMP-9-dependent plasticity in the CeA. Further, we illustrate how the latter contributes to anhedonia and deficits of reward learning. Behavioral impairments are accompanied by alterations in morphology of dendritic spines in the CeA towards a more immature state, most likely reflecting animals' inability to adapt. We strengthen the link between the adverse effects of FLX and its influence on MMP-9 by showing that behavior of MMP-9 knock-out animals remains unaffected by the drug. CONCLUSION AND IMPLICATIONS In conclusion, chronic FLX treatment differentially affects various forms of neuronal plasticity, which may explain its contradicting effects on the brain and behavior. Presented findings are of immediate clinical relevance since reported side effects of FLX pose a potential threat to patients
    corecore