49 research outputs found

    Alkene and Olefin Functionalization by Organoaluminum Compounds, Catalyzed with Zirconocenes: Mechanisms and Prospects

    Get PDF
    Alkene and olefin functionalization via addition of electro‐ or nucleophilic reagents is one of the convenient synthetic methods for the insertion of heteroatoms into organic molecules. The use of organometallic reagents in these reactions in combination with the specific catalysts provides high substrate conversion and process selectivity. The introduction of this approach into the chemistry of organoaluminum compounds leads to the development of chemo‐, regio‐ and stereoselective catalytic methods of alkene and olefin functionalization. The chapter focuses on the modern concepts of the alkene hydro‐, carbo‐ and cycloalumination mechanisms, that is, the experimental and theoretical data on the intermediate structures involved in the product formation, the effects of the catalyst and organoaluminum compound structure, reaction conditions on the activity and selectivity of the bimetallic systems. The prospects of the development of enantioselective methods using these catalytic systems for the alkene and olefin transformations are considered

    New in the Catalytic Synthesis of Practically Important Eight- and Nine-Membered Carbocycles by Cycloaddition Reactions with the Participation of 1,3,5-Cycloheptatrienes and 1,3,5,7-Cyclooctatetraenes

    No full text
    The data obtained by the authors in the field of chemistry of 1,3,5-cycloheptatrienes and 1,3,5,7-cyclooctatetraenes with the participation of complexes of transition metals are summarized. The reactions of cyclocodimerization of 1,3,5-cycloheptatrienes and 1,3,5,7-cyclooctatetraenes with alkenes, dienes and alkynes in the presence of transition metal complexes, carried out by the type of [6π + 2π]- and [4π + 2π]-cycloaddition, are considered. Special attention is paid to the application of these reactions in the synthesis of practically important bi-, tri- and polycyclic strained compounds, as well as in the development of stereoselective methods for the synthesis of natural compounds

    Co(I)-Catalyzed [4π + 2π] Cycloaddition of 1,2-Dienes to 1,3,5-Cyclooctatriene in the Synthesis of Previously Undescribed Tricyclo[4.2.2.02,5]Decenes

    No full text
    The catalytic [4π + 2π]-cycloaddition of monosubstituted and disubstituted 1,2-dienes to 1,3,5-cyclooctatriene under the action of Co(acac)2(dppe)/Zn/ZnI2 was performed for the first time to produce substituted tricyclo[4.2.2.02,5]dec-7-enes

    Synthesis of New Functionally Substituted 9-Azabicyclo[4.2.1]nona-2,4,7-trienes by Cobalt(I)-Catalyzed [6π + 2π]-Cycloaddition of N-Carbocholesteroxyazepine to Alkynes

    No full text
    Catalytic [6π + 2π]-cycloaddition of N-carbocholesteroxyazepine with functionally substituted terminal alkynes and 1,4-butynediol was performed for the first time under the action of the Co(acac)2(dppe)/Zn/ZnI2 three-component catalytic system. The reaction gave previously undescribed but promising 9-azabicyclo[4.2.1]nona-2,4,7-trienes (in 79–95% yields), covalently bound to a natural metabolite, cholesterol. The structure of the synthesized azabicycles was confirmed by analysis of one- and two-dimensional (1H, 13C, DEPT 13C, COSY, NOESY, HSQC, HMBC) NMR spectra

    Current Trends in the Synthesis of Practically Important Five-Membered Boracarbocycles by Transmetalation of Aluminacarbocycles with Boron Halides

    No full text
    The data obtained by the authors in the field of chemistry of substituted borolanes and 2,3-dihydro-1H-boroles are summarized. The authors developed a selective method for the synthesis of five-membered boracarbocycles via transmetalation of aluminacarbocycles, obtained by the catalytic cycloalumination of unsaturated compounds (terminal olefins or acetylenes) with AlEt3 in the presence of Cp2ZrCl2 as a catalyst by boron halides (BF3·Et2O, BCl3, and BBr3). Some examples of the use of this approach to modify steroid compounds (in particular, to introduce a borolan fragment into them) are described in this review

    Sulfur-Containing Homo- and Methanofullerenes: Synthesis and Study of Tribological Properties

    No full text
    The data obtained by the authors in the field of carbon cluster chemistry, namely the catalytic cycloaddition of sulfur-containing diazo compounds to C60-fullerene under the action of complex Pd catalysts, are summarized. Cycloaddition reactions of diazoalkanes, diazoketones, and diazothioates with C60-fullerene, catalyzed by Pd(acac)2–PPh3–Et3Al, with the selective formation of new sulfur-containing methano-, homo-, and pyrazolinofullerenes, are promising as modern nanosized additives in oils for highly loaded mechanisms

    Approach to the Synthesis of Five-Membered Organophosphorus Compounds via Alumoles and Alumolanes

    No full text
    This work summarizes the results of a new approach to the synthesis of previously undescribed, hard-to-obtain five-membered cyclic organophosphorus compounds: 3-alkyl(aryl)-substituted phospholanes, α,ω-bisphospholanes, polycyclic phospholanes, 4,5-dialkyl(diaryl)-disubstituted 2,3-dihydrophospholes, as well as their oxides and sulfides. Alumoles and alumolanes synthesized by the reaction of cycloalumination of available unsaturated compounds (terminal alkenes, α,ω-alkadienes, norbornene derivatives, symmetrical internal alkynes) with Et3Al in the presence of a Cp2ZrCl2 catalyst were used as precursors. The substitution of aluminum atoms in cyclic organoaluminum compounds for phosphorus atoms takes place using alkyl(aryl)phosphorus (III) dichlorides. The developed one-pot method gives high yields of products under mild conditions

    Catalytic Cycloaddition of Diazo Compounds Based on Pharmacologically Significant and Natural Compounds to C<sub>60</sub>-Fullerene <xref rid="fn1-chemproc-2154902" ref-type="fn">†</xref>

    No full text
    The data obtained by the authors in the field of carbon cluster chemistry, namely, the catalytic cycloaddition of diazo compounds of modern pharmacologically significant and natural compounds to C60-fullerene under the action of complex Pd–catalysts, are summarized. Cycloaddition reactions of diazoacetates, diazoamides, and diazoketones with C60-fullerene, catalyzed by Pd(acac)2–PPh3–Et3Al, with the selective formation of methano– and pyrazolinofullerenes, are new and promising classes of biologically active derivatives of C60-fullerenes

    Synthesis of New Functionally Substituted Bicyclo[4.2.1]nona-2,4,7-trienes by Co(I)-Catalyzed [6&pi; + 2&pi;] Cycloaddition of 1-Benzoylcycloheptatriene

    No full text
    Functionally substituted bicyclo[4.2.1]nona-2,4,7-trienes were synthesized for the first time on the basis of the reaction of [6&pi; + 2&pi;] cycloaddition of hexyn-1 and 4-pentynenitrile to 1-benzoylcycloheptatriene under the action of the three-component catalytic system Co(acac)2(dppe)/Zn/ZnI2

    Synthesis of 1,3-Diyne Derivatives of Lembehyne B with Antitumor and Neuritogenic Activity

    No full text
    The report presents data from our studies on obtaining lembehyne B derivatives with cytotoxic and neuritogenic activity. The methods and approaches to the synthesis of the above-mentioned lembehynes presented in the report are based on the use of the catalytic cross-cyclomagnesiation of 1,2-dienes (the Dzhemilev reaction) at the key stage of the synthesis
    corecore