54 research outputs found

    Development of an automated DNA purification module using a micro-fabricated pillar chip

    Full text link
    We present a fully automated DNA purification module comprised of a micro-fabricated chip and sequential injection analysis system that is designed for use within autonomous instruments that continuously monitor the environment for the presence of biological threat agents. The chip has an elliptical flow channel containing a bed (3.5 &times; 3.5 mm) of silica-coated pillars with height, width and center-to-center spacing of 200, 15, and 30 &micro;m, respectively, which provides a relatively large surface area (ca. 3 cm2) for DNA capture in the presence of chaotropic agents. We have characterized the effect of various fluidic parameters on extraction performance, including sample input volume, capture flow rate, and elution volume. The flow-through design made the pillar chip completely reusable; carryover was eliminated by flushing lines with sodium hypochlorite and deionized water between assays. A mass balance was conducted to determine the fate of input DNA not recovered in the eluent. The device was capable of purifying and recovering Bacillus anthracis genomic DNA (input masses from 0.32 to 320 pg) from spiked environmental aerosol samples, for subsequent analysis using polymerase chain reaction-based assays.<br /

    Performance Improvements to the Neutron Imaging System at the National Ignition Facility

    Get PDF
    A team headed by LANL and including many members from LLNL and NSTec LO and NSTec LAO fielded a neutron imaging system (NIS) at the National Ignition Facility at the start of 2011. The NIS consists of a pinhole array that is located 32.5 cm from the source and that creates an image of the source in a segmented scintillator 28 m from the source. The scintillator is viewed by two gated, optical imaging systems: one that is fiber coupled, and one that is lens coupled. While there are a number of other pieces to the system related to pinhole alignment, collimation, shielding and data acquisition, those pieces are discussed elsewhere and are not relevant here. The system is operational and has successfully obtained data on more that ten imaging shots. This remainder of this whitepaper is divided in five main sections. In Section II, we identify three critical areas of improvement that we believe should be pursued to improve the performance of the system for future experiments: spatial resolution, temporal response and signal-to-noise ratio. In Section III, we discuss technologies that could be used to improve these critical performance areas. In Section IV, we describe a path to evolve the current system to achieve improved performance with minimal impact on the ability of the system to operate on shots. In Section V, we discuss the abilities, scope and timescales of the current teams and the Commissariat energie atomique (CEA). In Section VI, we summarize and make specific recommendations for collaboration on improvements to the NIS

    Underwater Application of Quantitative PCR on an Ocean Mooring

    Get PDF
    The Environmental Sample Processor (ESP) is a device that allows for the underwater, autonomous application of DNA and protein probe array technologies as a means to remotely identify and quantify, in situ, marine microorganisms and substances they produce. Here, we added functionality to the ESP through the development and incorporation of a module capable of solid-phase nucleic acid extraction and quantitative PCR (qPCR). Samples collected by the instrument were homogenized in a chaotropic buffer compatible with direct detection of ribosomal RNA (rRNA) and nucleic acid purification. From a single sample, both an rRNA community profile and select gene abundances were ascertained. To illustrate this functionality, we focused on bacterioplankton commonly found along the central coast of California and that are known to vary in accordance with different oceanic conditions. DNA probe arrays targeting rRNA revealed the presence of 16S rRNA indicative of marine crenarchaea, SAR11 and marine cyanobacteria; in parallel, qPCR was used to detect 16S rRNA genes from the former two groups and the large subunit RuBisCo gene (rbcL) from Synecchococcus. The PCR-enabled ESP was deployed on a coastal mooring in Monterey Bay for 28 days during the spring-summer upwelling season. The distributions of the targeted bacterioplankon groups were as expected, with the exception of an increase in abundance of marine crenarchaea in anomalous nitrate-rich, low-salinity waters. The unexpected co-occurrence demonstrated the utility of the ESP in detecting novel events relative to previously described distributions of particular bacterioplankton groups. The ESP can easily be configured to detect and enumerate genes and gene products from a wide range of organisms. This study demonstrated for the first time that gene abundances could be assessed autonomously, underwater in near real-time and referenced against prevailing chemical, physical and bulk biological conditions

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums

    Full text link
    • …
    corecore