5 research outputs found
Processing Methods Established To Fabricate Porous Oxide Ceramic Spheres for Thermal Barrier Coating Applications
As gas turbine technology advances, the demand for efficient engines and emission reduction requires a further increase in operating temperatures, but combustion temperatures are currently limited by the temperature capability of the engine components. The existing thermal barrier coating (TBC) technology does not provide sufficient thermal load reduction at a 3000 F (1649 C) operating condition. Advancement in thermal barrier coating technology is needed to meet this aggressive goal. One concept for improving thermal barrier coating effectiveness is to design coating systems that incorporate a layer that reflects or scatters photon radiation. This can be achieved by using porous structures. The refractive index mismatch between the solid and pore, the pore size, and the pore density can be engineered to efficiently scatter photon radiation. Under NASA s Ultra-Efficient Engine Technology (UEET) Program, processing methods to fabricate porous ceramic spheres suitable for scattering photon radiation at elevated temperatures have been established. A straightforward templating process was developed at the NASA Glenn Research Center that requires no special processing equipment. The template was used to define particle shape, particle size, and pore size. Spherical organic cation exchange resins were used as a structure-directing template. The cation exchange resins have dual template capabilities that can produce different pore architectures. This process can be used to fabricate both metal oxide and metal carbide spheres
High-Temperature Proton-Conducting Ceramics Developed
High-temperature protonic conductors (HTPC) are needed for hydrogen separation, hydrogen sensors, fuel cells, and hydrogen production from fossil fuels. The HTPC materials for hydrogen separation at high temperatures are foreseen to be metal oxides with the perovskite structure A(sup 2+)B(sup 4+)C(sup 2-, sub 3) and with the trivalent cation (M(sup 3+)) substitution at the B(sup 4+)-site to introduce oxygen vacancies. The high affinity for hydrogen ions (H(sup +)) is advantageous for protonic transport, but it increases the reactivity toward water (H2O) and carbon dioxide (CO2), which can lead to premature membrane failure. In addition, there are considerable technological challenges related to the processing of HTPC materials. The high melting point and multi-cation chemistry of HTPC materials creates difficulties in in achieving high-density, single-phase membranes by solid-state sintering. The presence of secondary phases and grain-boundary interfaces are detrimental to the protonic conduction and environmental stability of polycrystalline HTPC materials
Thermoelectric properties of Co(x)Ni(4-x)Sb(12-y)Sn(y) ternary skutterudites
Thermoelectric materials based on the skutterudite crystal structure have demonstrated enhanced performance (ZT greater than 1), along with good thermal stability and favorable mechanical properties. Binary skutterudites, with single and multiple fillers, have been intensively studied in recent years. Compared to binary skutterudites, the ternary systems have received less attention, e.g. Ni4Sb8Sn4. Ternary skutterudites are isoelectronic variants of binary skutterudites; cation substitutions appear to be isostructural to their binary analogues. In general, ternary skutterudites exhibit lower thermal conductivity. Ternary systems of Ni4Bi8Ge4, Ni4Sb8Ge4, and Ni4Sb8Sn4 were investigated using combined solidification and sintering steps. Skutterudite formation was not achieved in the Ni4Bi8Ge4 and Ni4Sb8Ge4 systems; skutterudite formation occurred in Ni4Sb8Sn4 system. P-type material was achieved by Co substitution for Ni. Thermoelectric properties were measured from 298 K to 673 K for Ni4Sb8Sn4, Ni4 Sb7Sn5 and Co2Ni2Sb7Sn5. N-type Ni4Sb8Sn4 exhibit the highest figure of merit of 0.1 at 523 K
High-Temperature Piezoelectric Ceramic Developed
Active combustion control of spatial and temporal variations in the local fuel-to-air ratio is of considerable interest for suppressing combustion instabilities in lean gas turbine combustors and, thereby, achieving lower NOx levels. The actuator for fuel modulation in gas turbine combustors must meet several requirements: (1) bandwidth capability of 1000 Hz, (2) operating temperature compatible with the fuel temperature, which is in the vicinity of 400 F, (3) stroke of approximately 4 mils (100 m), and (4) force of 300 lb-force. Piezoelectric actuators offer the fastest response time (microsecond time constants) and can generate forces in excess of 2000 lb-force. The state-of-the-art piezoceramic material in industry today is Pb(Zr,Ti)O3, called PZT. This class of piezoelectric ceramic is currently used in diesel fuel injectors and in the development of high-response fuel modulation valves. PZT materials are generally limited to operating temperatures of 250 F, which is 150 F lower than the desired operating temperature for gas turbine combustor fuel-modulation injection valves. Thus, there is a clear need to increase the operating temperature range of piezoceramic devices for active combustion control in gas turbine engines