15 research outputs found

    Genetic variation of Mycobacterium tuberculosis circulating in Kharkiv Oblast, Ukraine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A persistent increase of tuberculosis cases has recently been noted in the Ukraine. The reported incidence of drug-resistant isolates of <it>M. tuberculosis </it>is growing steadily; however, data on the genetic variation of isolates of <it>M. tuberculosis </it>circulating in northern Ukraine and on the spectrum and frequency of occurrence of mutations determining resistance to the principal anti-tuberculosis drugs isoniazid and rifampicin have not yet been reported.</p> <p>Methods</p> <p>Isolates of <it>M. tuberculosis </it>from 98 tuberculosis patients living in Kharkiv Oblast (Ukraine) were analyzed using VNTR- and RFLP-IS6110-typing methods. Mutations associated with resistance to rifampicin and isoniazid were detected by RFLP-PCR methods, and also confirmed by sequencing.</p> <p>Results</p> <p>We identified 75 different genetic profiles. Thirty four (34%) isolates belonged to the Beijing genotype and 23 (23%) isolates belonged to the LAM family. A cluster of isolates belonging to the LAM family had significant genetic heterogeneity, indicating that this family had an ancient distribution and circulation in this geographical region. Moreover, we found a significant percentage of the isolates (36%) belonged to as yet unidentified families of <it>M. tuberculosis </it>or had individual non-clustering genotypes. Mutations conferring rifampicin and isoniazid resistance were detected in 49% and 54% isolates, respectively. Mutations in codon 531 of the <it>rpoB </it>gene and codon 315 of the <it>katG </it>gene were predominant among drug-resistant isolates. An association was found for belonging to the LAM strain family and having multiple drug resistance (R = 0.27, p = 0.0059) and also for the presence of a mutation in codon 531 of the <it>rpoB </it>gene and belonging to the Beijing strain family (R = 0.2, p = 0.04).</p> <p>Conclusions</p> <p>Transmission of drug-resistant isolates seems to contribute to the spread of resistant TB in this oblast. The Beijing genotype and LAM genotype should be seen as a major cause of drug resistant TB in this region.</p

    Bacteriophage-Mediated Cancer Gene Therapy

    No full text
    Bacteriophages have long been considered only as infectious agents that affect bacterial hosts. However, recent studies provide compelling evidence that these viruses are able to successfully interact with eukaryotic cells at the levels of the binding, entry and expression of their own genes. Currently, bacteriophages are widely used in various areas of biotechnology and medicine, but the most intriguing of them is cancer therapy. There are increasing studies confirming the efficacy and safety of using phage-based vectors as a systemic delivery vehicle of therapeutic genes and drugs in cancer therapy. Engineered bacteriophages, as well as eukaryotic viruses, demonstrate a much greater efficiency of transgene delivery and expression in cancer cells compared to non-viral gene transfer methods. At the same time, phage-based vectors, in contrast to eukaryotic viruses-based vectors, have no natural tropism to mammalian cells and, as a result, provide more selective delivery of therapeutic cargos to target cells. Moreover, numerous data indicate the presence of more complex molecular mechanisms of interaction between bacteriophages and eukaryotic cells, the further study of which is necessary both for the development of gene therapy methods and for understanding the cancer nature. In this review, we summarize the key results of research into aspects of phage&ndash;eukaryotic cell interaction and, in particular, the use of phage-based vectors for highly selective and effective systemic cancer gene therapy

    Post-Transcriptional Modifications of RNA as Regulators of Apoptosis in Glioblastoma

    No full text
    This review is devoted to changes in the post-transcriptional maturation of RNA in human glioblastoma cells, which leads to disruption of the normal course of apoptosis in them. The review thoroughly highlights the latest information on both post-transcriptional modifications of certain regulatory RNAs, associated with the process of apoptosis, presents data on the features of apoptosis in glioblastoma cells, and shows the relationship between regulatory RNAs and the apoptosis in tumor cells. In conclusion, potential target candidates are presented that are necessary for the development of new drugs for the treatment of glioblastoma

    Aptamers Enhance Oncolytic Viruses’ Antitumor Efficacy

    No full text
    Oncolytic viruses are highly promising for cancer treatment because they target and lyse tumor cells. These genetically engineered vectors introduce therapeutic or immunostimulatory genes into the tumor. However, viral therapy is not always safe and effective. Several problems are related to oncolytic viruses’ targeted delivery to the tumor and immune system neutralization in the bloodstream. Cryoprotection and preventing viral particles from aggregating during storage are other critical issues. Aptamers, short RNA, or DNA oligonucleotides may help to crawl through this bottleneck. They are not immunogenic, are easily synthesized, can be chemically modified, and are not very demanding in storage conditions. It is possible to select an aptamer that specifically binds to any target cell, oncolytic virus, or molecule using the SELEX technology. This review comprehensively highlights the most important research and methodological approaches related to oncolytic viruses and nucleic acid aptamers. Here, we also analyze possible future research directions for combining these two methodologies to improve the effectiveness of cancer virotherapy

    Modification of a Tumor-Targeting Bacteriophage for Potential Diagnostic Applications

    No full text
    Background: Tumor-targeting bacteriophages can be used as a versatile new platform for the delivery of diagnostic imaging agents and therapeutic cargo. This became possible due to the development of viral capsid modification method. Earlier in our laboratory and using phage display technology, phages to malignant breast cancer cells MDA-MB 231 were obtained. The goal of this study was the optimization of phage modification and the assessment of the effect of the latter on the efficiency of phage particle penetration into MDA-MB 231 cells. Methods: In this work, we used several methods, such as chemical phage modification using FAM-NHS ester, spectrophotometry, phage amplification, sequencing, phage titration, flow cytometry, and confocal microscopy. Results: We performed chemical phage modification using different concentrations of FAM-NHS dye (0.5 mM, 1 mM, 2 mM, 4 mM, 8 mM). It was shown that with an increase of the modification degree, the phage titer decreases. The maximum modification coefficient of the phage envelope with the FAM–NHS dye was observed with 4 mM modifying agent and had approximately 804,2 FAM molecules per phage. Through the immunofluorescence staining and flow cytometry methods, it was shown that the modified bacteriophage retains the ability to internalize into MDA-MB-231 cells. The estimation of the number of phages that could have penetrated into one tumor cell was conducted. Conclusions: Optimizing the conditions for phage modification can be an effective strategy for producing tumor-targeting diagnostic and therapeutic agents, i.e., theranostic drugs

    Molecular & genetic characteristics of Mycobacterium tuberculosis strains circulating in the southern part of West Siberia

    No full text
    Background & objectives: A complicated epidemiological situation characterized by significantly high tuberculosis (TB) morbidity is observed in West Siberia. This study was aimed to investigate the genetic characteristics of Mycobacterium tuberculosis circulating in the southern part of West Siberia (in the Omsk region). Methods: From March 2013 to January 2015, 100 isolates of M. tuberculosis were obtained from patients with pulmonary TB living in the Omsk region. Drug susceptibility testing was performed on Lowenstein-Jensen medium (absolute concentration method). Genetic typing of isolates was carried out by variable number tandem repeats of mycobacterial interspersed repetitive units (MIRU-VNTR) typing and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. The genetic types and characteristics of cluster strains were determined using 15 MIRU-VNTR loci. Results: Thirty six VNTR types were found. Twenty six (26.0%) isolates had a unique profile, and the remaining 74 were grouped in 10 clusters containing from 2 to 23 isolates. The Beijing genotype was found in 72 isolates, 61 (85.0%) of which were part of five clusters that included two large clusters containing 23 isolates. Other genetic families, such as Latin-American Mediterranean (LAM, 11.0%), S family (2.0%) and Haarlem (4.0%), were also detected. The genetic family of 11 isolates could not be determined. Six different VNTR profiles were found in these non-classified isolates. Only 16 per cent of isolates were sensitive to anti-TB drugs. The katG315 (94.8%) and rpoB531 (92.2%) mutations were identified in 77 multidrug-resistant M. tuberculosis isolates. Interpretation & conclusions: This study showed that the M. tuberculosis population in the Omsk region was heterogeneous. The Beijing genotype predominated and was actively spreading. The findings obtained point to the need for the implementation of more effective preventive measures to stop the spread of drug-resistant M. tuberculosis strains

    Homocystamide Conjugates of Human Serum Albumin as a Platform to Prepare Bimodal Multidrug Delivery Systems for Boron Neutron Capture Therapy

    No full text
    Boron neutron capture therapy is a unique form of adjuvant cancer therapy for various malignancies including malignant gliomas. The conjugation of boron compounds and human serum albumin (HSA)—a carrier protein with a long plasma half-life—is expected to extend systemic circulation of the boron compounds and increase their accumulation in human glioma cells. We report on the synthesis of fluorophore-labeled homocystamide conjugates of human serum albumin and their use in thiol-‘click’ chemistry to prepare novel multimodal boronated albumin-based theranostic agents, which could be accumulated in tumor cells. The novelty of this work involves the development of the synthesis methodology of albumin conjugates for the imaging-guided boron neutron capture therapy combination. Herein, we suggest using thenoyltrifluoroacetone as a part of an anticancer theranostic construct: approximately 5.4 molecules of thenoyltrifluoroacetone were bound to each albumin. Along with its beneficial properties as a chemotherapeutic agent, thenoyltrifluoroacetone is a promising magnetic resonance imaging agent. The conjugation of bimodal HSA with undecahydro-closo-dodecaborate only slightly reduced human glioma cell line viability in the absence of irradiation (~30 μM of boronated albumin) but allowed for neutron capture and decreased tumor cell survival under epithermal neutron flux. The simultaneous presence of undecahydro-closo-dodecaborate and labeled amino acid residues (fluorophore dye and fluorine atoms) in the obtained HSA conjugate makes it a promising candidate for the combination imaging-guided boron neutron capture therapy

    MicroRNA and mRNA Expression Changes in Glioblastoma Cells Cultivated under Conditions of Neurosphere Formation

    No full text
    Glioblastoma multiforme (GBM) is one of the most highly metastatic cancers. The study of the pathogenesis of GBM, as well as the development of targeted oncolytic drugs, require the use of actual cell models, in particular, the use of 3D cultures or neurospheres (NS). During the formation of NS, the adaptive molecular landscape of the transcriptome, which includes various regulatory RNAs, changes. The aim of this study was to reveal changes in the expression of microRNAs (miRNAs) and their target mRNAs in GBM cells under conditions of NS formation. Neurospheres were obtained from both immortalized U87 MG and patient-derived BR3 GBM cell cultures. Next generation sequencing analysis of small and long RNAs of adherent and NS cultures of GBM cells was carried out. It was found that the formation of NS proceeds with an increase in the level of seven and a decrease in the level of 11 miRNAs common to U87 MG and BR3, as well as an increase in the level of 38 and a decrease in the level of 12 mRNA/lncRNA. Upregulation of miRNAs hsa-miR: -139-5p; -148a-3p; -192-5p; -218-5p; -34a-5p; and -381-3p are accompanied by decreased levels of their target mRNAs: RTN4, FLNA, SH3BP4, DNPEP, ETS2, MICALL1, and GREM1. Downregulation of hsa-miR: -130b-5p, -25-5p, -335-3p and -339-5p occurs with increased levels of mRNA-targets BDKRB2, SPRY4, ERRFI1 and TGM2. The involvement of SPRY4, ERRFI1, and MICALL1 mRNAs in the regulation of EGFR/FGFR signaling highlights the role of hsa-miR: -130b-5p, -25-5p, -335-3p, and -34a-5p not only in the formation of NS, but also in the regulation of malignant growth and invasion of GBM. Our data provide the basis for the development of new approaches to the diagnosis and treatment of GBM

    Aptamers for Addressed Boron Delivery in BNCT: Effect of Boron Cluster Attachment Site on Functional Activity

    No full text
    Among the great variety of anti-cancer therapeutic strategies, boron neutron capture therapy (BNCT) represents a unique approach that doubles the targeting accuracy due to the precise positioning of a neutron beam and the addressed delivery of boron compounds. We have recently demonstrated the principal possibility of using a cell-specific 2′-F-RNA aptamer for the targeted delivery of boron clusters for BNCT. In the present study, we evaluated the amount of boron-loaded aptamer inside the cell via two independent methods: quantitative real-time polymerase chain reaction and inductive coupled plasma–atomic emission spectrometry. Both assays showed that the internalized boron level inside the cell exceeds 1 × 109 atoms/cell. We have synthesized closo-dodecaborate conjugates of 2′-F-RNA aptamers GL44 and Waz, with boron clusters attached either at the 3′- or at the 5′-end. The influence of cluster localization was evaluated in BNCT experiments on U-87 MG human glioblastoma cells and normal fibroblasts and subsequent analyses of cell viability via real-time cell monitoring and clonogenic assay. Both conjugates of GL44 aptamer provided a specific decrease in cell viability, while only the 3′-conjugate of the Waz aptamer showed the same effect. Thus, an individual adjustment of boron cluster localization is required for each aptamer. The efficacy of boron-loaded 2′-F-RNA conjugates was comparable to that of 10B-boronophenylalanine, so this type of boron delivery agent has good potential for BNCT due to such benefits as precise targeting, low toxicity and the possibility to use boron clusters made of natural, unenriched boron
    corecore