6 research outputs found
1-Tetradecylpyridinium bromide monohydrate
In the title compound, C19H34N+·Br−·H2O, the dihedral angle between the trans-planar alkyl side chain and the pyridinium ring is 52.73 (7)°. In the crystal structure, O—H⋯Br, C—H⋯Br and C—H⋯O hydrogen bonds form a network, while the hydrophobic alkyl chains interdigitate, forming bilayers
Dynamic control of neurochemical release with ultrasonically-sensitive nanoshell-tethered liposomes
The unique surface plasmon resonance of hollow gold nanoshells can be used to achieve drug release from liposomes upon laser stimulation, and adapted to mimic the intricate dynamics of neurotransmission ex vivo in brain preparations. However, to induce a physiological response in vivo requires the degree of temporal precision afforded by laser stimulation, but with a greater depth of penetration through tissue. Here we report that the attachment of hollow gold nanoshells to the surface of robust liposomes results in a construct that is highly sensitive to ultrasonic stimulation. The resulting construct can be remotely triggered by low intensity, therapeutic ultrasound. To our knowledge, this is the first example of nanoparticle-liposome system that can be activated by both laser and acoustic stimulation. The system is capable of encapsulating the neurochemical dopamine, and repeatedly releasing small amounts on-demand in a circulating environment, allowing for precise spatiotemporal control over the release profile
Robust Biocompatible Fibers from Silk Fibroin Coated MXene Sheets
Abstract Conductive fibers are needed for the development of flexible electronic and biomedical devices. MXene fibers show great promise for use in such applications because of their high conductivity. Current literature on MXene fiber development highlights the need for improving their mechanical properties and investigation of biocompatibility. Here the use of silk fibroin biopolymer as a MXene formulation additive for the production of MXene fibers is studied. It is found that the favorable silk fibroin–MXene interactions resulted in improved durability, withstanding up to 1 h of high frequency sonication in buffered solutions. Furthermore, fibers with ≈5 wt% silk fibroin displays interesting properties including high conductivity (≈3700 S cm−1), high volumetric capacitance (≈910 F cm−3), and non‐cytotoxicity toward THP‐1 monocytic cells. The results presented here provide an important insight into potential use of MXene fibers in flexible electronics and biomedical applications