239 research outputs found
Multi-resolution texture classification based on local image orientation
The aim of this paper is to evaluate quantitatively the discriminative power of the image orientation in the texture classification process. In this regard, we have evaluated the performance of two texture classification schemes where the image orientation is extracted using the partial derivatives of the Gaussian function. Since the texture descriptors are dependent on the observation scale, in this study the main emphasis is placed on the implementation of multi-resolution texture analysis schemes. The experimental results were obtained when the analysed texture descriptors were applied to standard texture databases
Exponential Time Complexity of Weighted Counting of Independent Sets
We consider weighted counting of independent sets using a rational weight x:
Given a graph with n vertices, count its independent sets such that each set of
size k contributes x^k. This is equivalent to computation of the partition
function of the lattice gas with hard-core self-repulsion and hard-core pair
interaction. We show the following conditional lower bounds: If counting the
satisfying assignments of a 3-CNF formula in n variables (#3SAT) needs time
2^{\Omega(n)} (i.e. there is a c>0 such that no algorithm can solve #3SAT in
time 2^{cn}), counting the independent sets of size n/3 of an n-vertex graph
needs time 2^{\Omega(n)} and weighted counting of independent sets needs time
2^{\Omega(n/log^3 n)} for all rational weights x\neq 0.
We have two technical ingredients: The first is a reduction from 3SAT to
independent sets that preserves the number of solutions and increases the
instance size only by a constant factor. Second, we devise a combination of
vertex cloning and path addition. This graph transformation allows us to adapt
a recent technique by Dell, Husfeldt, and Wahlen which enables interpolation by
a family of reductions, each of which increases the instance size only
polylogarithmically.Comment: Introduction revised, differences between versions of counting
independent sets stated more precisely, minor improvements. 14 page
Boundary Term in Metric f(R) Gravity: Field Equations in the Metric Formalism
The main goal of this paper is to get in a straightforward form the field
equations in metric f(R) gravity, using elementary variational principles and
adding a boundary term in the action, instead of the usual treatment in an
equivalent scalar-tensor approach. We start with a brief review of the
Einstein-Hilbert action, together with the Gibbons-York-Hawking boundary term,
which is mentioned in some literature, but is generally missing. Next we
present in detail the field equations in metric f(R) gravity, including the
discussion about boundaries, and we compare with the Gibbons-York-Hawking term
in General Relativity. We notice that this boundary term is necessary in order
to have a well defined extremal action principle under metric variation.Comment: 12 pages, title changes by referee recommendation. Accepted for
publication in General Relativity and Gravitation. Matches with the accepted
versio
Projective re-normalization for improving the behavior of a homogeneous conic linear system
In this paper we study the homogeneous conic system F : Ax = 0, x ∈ C \ {0}. We choose a point ¯s ∈ intC∗ that serves as a normalizer and consider computational properties of the normalized system F¯s : Ax = 0, ¯sT x = 1, x ∈ C. We show that the computational complexity of solving F via an interior-point method depends
only on the complexity value ϑ of the barrier for C and on the symmetry of the origin in the image set H¯s := {Ax :
¯sT x = 1, x ∈ C}, where the symmetry of 0 in H¯s is sym(0,H¯s) := max{α : y ∈ H¯s -->−αy ∈ H¯s} .We show that a solution of F can be computed in O(sqrtϑ ln(ϑ/sym(0,H¯s)) interior-point iterations. In order to improve the theoretical and practical computation of a solution of F, we next present a general theory for projective re-normalization of the feasible region F¯s and the image set H¯s and prove the existence of a normalizer ¯s such that sym(0,H¯s) ≥ 1/m provided that F has an interior solution. We develop a methodology for constructing a normalizer ¯s such that sym(0,H¯s) ≥ 1/m with high probability, based on sampling on a geometric random walk with associated probabilistic complexity analysis. While such a normalizer is not itself computable in strongly-polynomialtime,
the normalizer will yield a conic system that is solvable in O(sqrtϑ ln(mϑ)) iterations, which is strongly-polynomialtime.
Finally, we implement this methodology on randomly generated homogeneous linear programming feasibility
problems, constructed to be poorly behaved. Our computational results indicate that the projective re-normalization
methodology holds the promise to markedly reduce the overall computation time for conic feasibility problems; for
instance we observe a 46% decrease in average IPM iterations for 100 randomly generated poorly-behaved problem
instances of dimension 1000 × 5000.Singapore-MIT Allianc
On the spherical-axial transition in supernova remnants
A new law of motion for supernova remnant (SNR) which introduces the quantity
of swept matter in the thin layer approximation is introduced. This new law of
motion is tested on 10 years observations of SN1993J. The introduction of an
exponential gradient in the surrounding medium allows to model an aspherical
expansion. A weakly asymmetric SNR, SN1006, and a strongly asymmetric SNR,
SN1987a, are modeled. In the case of SN1987a the three observed rings are
simulated.Comment: 19 figures and 14 pages Accepted for publication in Astrophysics &
Space Science in the year 201
Primordial fluctuations and non-Gaussianities from multifield DBI Galileon inflation
We study a cosmological scenario in which the DBI action governing the motion
of a D3-brane in a higher-dimensional spacetime is supplemented with an induced
gravity term. The latter reduces to the quartic Galileon Lagrangian when the
motion of the brane is non-relativistic and we show that it tends to violate
the null energy condition and to render cosmological fluctuations ghosts. There
nonetheless exists an interesting parameter space in which a stable phase of
quasi-exponential expansion can be achieved while the induced gravity leaves
non trivial imprints. We derive the exact second-order action governing the
dynamics of linear perturbations and we show that it can be simply understood
through a bimetric perspective. In the relativistic regime, we also calculate
the dominant contribution to the primordial bispectrum and demonstrate that
large non-Gaussianities of orthogonal shape can be generated, for the first
time in a concrete model. More generally, we find that the sign and the shape
of the bispectrum offer powerful diagnostics of the precise strength of the
induced gravity.Comment: 34 pages including 9 figures, plus appendices and bibliography.
Wordings changed and references added; matches version published in JCA
Enhanced generation of VUV radiation by four-wave mixing in mercury using pulsed laser vaporization
The efficiency of a coherent VUV source at 125 nm, based on 2-photon resonant
four-wave mixing in mercury vapor, has been enhanced by up to 2 orders of
magnitude. This enhancement was obtained by locally heating a liquid Hg surface
with a pulsed excimer laser, resulting in a high density vapor plume in which
the nonlinear interaction occurred. Energies up to 5 μJ (1 kW peak power)
have been achieved while keeping the overall Hg cell at room temperature,
avoiding the use of a complex heat pipe. We have observed a strong saturation
of the VUV yield when peak power densities of the fundamental beams exceed the
GW/cm2 range, as well as a large intensity-dependant broadening (up to ~30
cm-1) of the two-photon resonance. The source has potential applications for
high resolution interference lithography and photochemistry
Simultaneous thermal and visual imaging of liquid water of the PEM fuel cell flow channels
Water flooding and membrane dry-out are two major issues that could be very detrimental to the performance and/or durability of the proton exchange membrane (PEM) fuel cells. The above two phenomena are well-related to the distributions of and the interaction between the water saturation and temperature within the membrane electrode assembly (MEA). To obtain further insights into the relation between water saturation and temperature, the distributions of liquid water and temperature within a transparent PEM fuel cell have been imaged using high-resolution digital and thermal cameras. A parametric study, in which the air flow rate has been incrementally changed, has been conducted to explore the viability of the proposed experimental procedure to correlate the relation between the distribution of liquid water and temperature along the MEA of the fuel cell. The results have shown that, for the investigated fuel cell, more liquid water and more uniform temperature distribution along MEA at the cathode side are obtained as the air flow rate decreases. Further, the fuel cell performance was found to increase with decreasing air flow rate. All the above results have been discussed
A survey for radio emission from white dwarfs in the VLA Sky Survey
Radio emission has been detected from tens of white dwarfs, in particular in accreting systems. Additionally, radio emission has been predicted as a possible outcome of a planetary system around a white dwarf. We searched for 3 GHz radio continuum emission in 846 000 candidate white dwarfs previously identified in Gaia using the Very Large Array Sky Survey (VLASS) Epoch 1 Quick Look Catalogue. We identified 13 candidate white dwarfs with a counterpart in VLASS within 2 arcsec. Five of those were found not to be white dwarfs in follow-up or archival spectroscopy, whereas seven others were found to be chance alignments with a background source in higher resolution optical or radio images. The remaining source, WDJ204259.71+152108.06, is found to be a white dwarf and M-dwarf binary with an orbital period of 4.1 d and long-term stochastic optical variability, as well as luminous radio and X-ray emission. For this binary, we find no direct evidence of a background contaminant, and a chance alignment probability of only ≈2 per cent. However, other evidence points to the possibility of an unfortunate chance alignment with a background radio and X-ray emitting quasar, including an unusually poor Gaia DR3 astrometric solution for this source. With at most one possible radio emitting white dwarf found, we conclude that strong (≳1–3 mJy) radio emission from white dwarfs in the 3 GHz band is virtually non-existent outside of interacting binaries
- …