11,057 research outputs found
Impacts of the US Ethanol Boom in Rural Mexico
Assessing the human and environmental impacts of biofuels requires unraveling the connection between international trade, on one hand, and local land-use and social change, on the other, while accounting for cross-scalar linkages between and within social and environmental systems. We propose a disaggregated approach to model how macro shocks shape rural households’ decisions, and how these decisions integrate onto aggregate supply and land use patterns. The approach, built on an agent-based model of rural Mexico, is used to explore the impacts of ethanol-driven US corn price increases. Our estimate of a 5.7% expansion in corn area by 2008 and wide variation across regions corresponds fairly well with ex post reports. Estimates from alternative models exceed ours by up to 200%. Corn land expanded between 1.6% in the southeast and 16% in the northwest. A 3% increase in agricultural value added nevertheless did not promote rural development, whether measured in terms of total rural value added or income. Direct and indirect (multiplier) effects on rural incomes were limited. Rural households experienced a 0.02% increase in real income, while absentee (non-rural) landholders’ income increased 3.9%. Our approach highlights the crucial role of local market conditions and interactions among microeconomic actors in shaping biofuels’ impacts via local feedback mechanisms. It suggests that subsistence activities might keep deforestation pressures in check in some developing areas while precluding the rural population from benefiting. A disaggregated approach should help integrate future research on land-use change and economics.Crop Production/Industries,
Nano and Micro indentation studies of bulk zirconia and EB PVD TBCs
In order to model the erosion of a material it is necessary to know the material
properties of both the impacting particles as well as the target. In the case of
electron beam (EB) physical vapour deposited(PVD) thermal barrier coatings
(TBCs) the properties of the columns as opposed to the coating as a whole are
important. This is due to the fact that discrete erosion events are on a similar
scale as the size of the individual columns. Thus nano* and micro* indentation
were used to determine the hardness and the Young"s modulus of the
columns. However, care had to be taken to ensure that it was the hardness of the
columns that was being measured and not the coating as a whole. This paper
discusses the differences in the results obtained when using the two different
tests and relates them to the interactions between the indent and the columns of
the EB PVD TBC microstructure. It was found that individual columns had a
hardness of 14 GPa measured using nano indentation, while the hardness of the
coating, using micro indentation decreased from 13 to 2.4 GPa as the indentation
load increased from 0.1 to 3N. This decrease in hardness was attributed to the
interaction between the indenter and a number of adjacent columns and the
ability of the columns to move laterally under indentation
A Property of the Mean Stieltjes Integral
The purpose of this note is to consider the following problem. Suppose [a,b] is an interval, f a function in [a,b] and g a function which has a derivative in [a,b]
X-Ray Synchrotron Emitting Fe-Rich Ejecta in SNR RCW 86
Supernova remnants may exhibit both thermal and nonthermal X-ray emission. We
present Chandra observations of RCW 86. Striking differences in the morphology
of X-rays below 1 keV and above 2 keV point to a different physical origin.
Hard X-ray emission is correlated fairly well with the edges of regions of
radio emission, suggesting that these are the locations of shock waves at which
both short-lived X-ray emitting electrons, and longer-lived radio-emitting
electrons, are accelerated. Soft X-rays are spatially well-correlated with
optical emission from nonradiative shocks, which are almost certainly portions
of the outer blast wave. These soft X-rays are well fit with simple thermal
plane-shock models. Harder X-rays show Fe K alpha emission and are well
described with a similar soft thermal component, but a much stronger
synchrotron continuum dominating above 2 keV, and a strong Fe K alpha line.
Quantitative analysis of this line and the surrounding continuum shows that it
cannot be produced by thermal emission from a cosmic-abundance plasma; the
ionization time is too short, as shown both by the low centroid energy (6.4
keV) and the absence of oxygen lines below 1 keV. Instead, a model of a plane
shock into Fe-rich ejecta, with a synchrotron continuum, provides a natural
explanation. This requires that reverse shocks into ejecta be accelerating
electrons to energies of order 50 TeV. We show that maximum energies of this
order can be produced by radiation-limited diffusive shock acceleration at the
reverse shocks.Comment: ApJ, accepted; full resolution images in
http://spider.ipac.caltech.edu/staff/rho/rcw86chandra.p
Cellular mRNAs access second ORFs using a novel amino acid sequence-dependent coupled translation termination-reinitiation mechanism
Polycistronic transcripts are considered rare in the human genome. Initiation of translation of internal ORFs of eukaryotic genes has been shown to use either leaky scanning or highly structured IRES regions to access initiation codons. Studies on mammalian viruses identified a mechanism of coupled translation termination-reinitiation that allows translation of an additional ORF. Here, the ribosome terminating translation of ORF-1 translocates upstream to reinitiate translation of ORF-2. We have devised an algorithm to identify mRNAs in the human transcriptome in which the major ORF-1 overlaps a second ORF capable of encoding a product of at least 50 aa in length. This identified 4368 transcripts representing 2214 genes. We investigated 24 transcripts, 22 of which were shown to express a protein from ORF-2 highlighting that 3' UTRs contain protein-coding potential more frequently than previously suspected. Five transcripts accessed ORF-2 using a process of coupled translation termination-reinitiation. Analysis of one transcript, encoding the CASQ2 protein, showed that the mechanism by which the coupling process of the cellular mRNAs was achieved was novel. This process was not directed by the mRNA sequence but required an aspartate-rich repeat region at the carboxyl terminus of the terminating ORF-1 protein. Introduction of wobble mutations for the aspartate codon had no effect, whereas replacing aspartate for glutamate repeats eliminated translational coupling. This is the first description of a coordinated expression of two proteins from cellular mRNAs using a coupled translation termination-reinitiation process and is the first example of such a process being determined at the amino acid level
Delaunay Stability via Perturbations
We present an algorithm that takes as input a finite point set in Euclidean space, and performs a perturbation that guarantees that the Delaunay triangulation of the resulting perturbed point set has quantifiable stability with respect to the metric and the point positions. There is also a guarantee on the quality of the simplices: they cannot be too flat. The algorithm provides an alternative tool to the weighting or refinement methods to remove poorly shaped simplices in Delaunay triangulations of arbitrary dimension, but in addition it provides a guarantee of stability for the resulting triangulation
- …