5 research outputs found

    Simulated Thrombin Generation in the Presence of Surface-Bound Heparin and Circulating Tissue Factor

    Get PDF
    An expanded computational model of surface induced thrombin generation was developed that includes hemodynamic effects, 22 biochemical reactions and 44 distinct chemical species. Surface binding of factors V, VIII, IX, and X was included in order to more accurately simulate the formation of the surface complexes tenase and prothrombinase. In order to model these reactions, the non-activated, activated and inactivated forms were all considered. This model was used to investigate the impact of surface bound heparin on thrombin generation with and without the additive effects of thrombomodulin (TM). In total, 104 heparin/TM pairings were evaluated (52 under venous conditions, 52 under arterial conditions), the results demonstrating the synergistic ability of heparin and TM to reduce thrombin generation. Additionally, the role of circulating tissue factor (TF[subscript p]) was investigated and compared to that of surface-bound tissue factor (TF[subscript s]). The numerical results suggest that circulating TF has the power to amplify thrombin generation once the coagulation cascade is already initiated by surface-bound TF. TF[subscript p] concentrations as low as 0.01 nM were found to have a significant impact on total thrombin generation.National Institutes of Health (U.S.) (Grants HL106018 and HL56819

    Overlimiting Current and Shock Electrodialysis in Porous Media

    Full text link
    Most electrochemical processes, such as electrodialysis, are limited by diffusion, but in porous media, surface conduction and electro-osmotic flow also contribute to ionic fluxes. In this paper, we report experimental evidence for surface-driven over-limiting current (faster than diffusion) and deionization shocks (propagating salt removal) in a porous medium. The apparatus consists of a silica glass frit (1 mm thick with 500 nm mean pore size) in an aqueous electrolyte (CuSO4_4 or AgNO3_3) passing ionic current from a reservoir to a cation-selective membrane (Nafion). The current-voltage relation of the whole system is consistent with a proposed theory based on the electro-osmotic flow mechanism over a broad range of reservoir salt concentrations (0.1 mM - 1.0 M), after accounting for (Cu) electrode polarization and pH-regulated silica charge. Above the limiting current, deionized water (≈10μ\approx 10 \mu MM) can be continuously extracted from the frit, which implies the existence of a stable shock propagating against the flow, bordering a depleted region that extends more than 0.5mm across the outlet. The results suggest the feasibility of "shock electrodialysis" as a new approach to water desalination and other electrochemical separations.Comment: 39 pages, 9 fig

    Overlimiting Current in a Microchannel

    No full text
    We revisit the classical problem of diffusion-limited ion transport to a membrane (or electrode) by considering the effects of charged sidewalls. Using simple mathematical models and numerical simulations, we identify three basic mechanisms for overlimiting current in a microchannel: (i) surface conduction carried by excess counterions, which dominates for very thin channels, (ii) convection by electro-osmotic flow on the sidewalls, which dominates for thicker channels, and (iii) transitions to electro-osmotic instability on the membrane end in very thick channels. These intriguing electrokinetic phenomena may find applications in biological separations, water desalination, and electrochemical energy storage.Massachusetts Institute of Technology. Energy InitiativeIsrael Science Foundation (Grant No. 65/07
    corecore