26 research outputs found
The inverse problem of differential Galois theory over the field R(z)
We describe a Picard-Vessiot theory for differential fields with non
algebraically closed fields of constants. As a technique for constructing and
classifying Picard-Vessiot extensions, we develop a Galois descent theory. We
utilize this theory to prove that every linear algebraic group over
occurs as a differential Galois group over . The
main ingredient of the proof is the Riemann-Hilbert correspondence for regular
singular differential equations over .Comment: 23 page
Higher Segal spaces I
This is the first paper in a series on new higher categorical structures
called higher Segal spaces. For every d > 0, we introduce the notion of a
d-Segal space which is a simplicial space satisfying locality conditions
related to triangulations of cyclic polytopes of dimension d. In the case d=1,
we recover Rezk's theory of Segal spaces. The present paper focuses on 2-Segal
spaces. The starting point of the theory is the observation that Hall algebras,
as previously studied, are only the shadow of a much richer structure governed
by a system of higher coherences captured in the datum of a 2-Segal space. This
2-Segal space is given by Waldhausen's S-construction, a simplicial space
familiar in algebraic K-theory. Other examples of 2-Segal spaces arise
naturally in classical topics such as Hecke algebras, cyclic bar constructions,
configuration spaces of flags, solutions of the pentagon equation, and mapping
class groups.Comment: 221 page
Crossed simplicial groups and structured surfaces
We propose a generalization of the concept of a Ribbon graph suitable to
provide combinatorial models for marked surfaces equipped with a G-structure.
Our main insight is that the necessary combinatorics is neatly captured in the
concept of a crossed simplicial group as introduced, independently, by
Krasauskas and Fiedorowicz-Loday. In this context, Connes' cyclic category
leads to Ribbon graphs while other crossed simplicial groups naturally yield
different notions of structured graphs which model unoriented, N-spin, framed,
etc, surfaces. Our main result is that structured graphs provide orbicell
decompositions of the respective G-structured moduli spaces. As an application,
we show how, building on our theory of 2-Segal spaces, the resulting theory can
be used to construct categorified state sum invariants of G-structured
surfaces.Comment: 86 pages, v2: revised versio
Triangulated surfaces in triangulated categories
For a triangulated category A with a 2-periodic dg-enhancement and a
triangulated oriented marked surface S we introduce a dg-category F(S,A)
parametrizing systems of exact triangles in A labelled by triangles of S. Our
main result is that F(S,A) is independent on the choice of a triangulation of S
up to essentially unique Morita equivalence. In particular, it admits a
canonical action of the mapping class group. The proof is based on general
properties of cyclic 2-Segal spaces.
In the simplest case, where A is the category of 2-periodic complexes of
vector spaces, F(S,A) turns out to be a purely topological model for the Fukaya
category of the surface S. Therefore, our construction can be seen as
implementing a 2-dimensional instance of Kontsevich's program on localizing the
Fukaya category along a singular Lagrangian spine.Comment: 55 pages, v2: references added and typos corrected, v3: expanded
version, comments welcom
Pushing forward matrix factorisations
We describe the pushforward of a matrix factorisation along a ring morphism
in terms of an idempotent defined using relative Atiyah classes, and use this
construction to study the convolution of kernels defining integral functors
between categories of matrix factorisations. We give an elementary proof of a
formula for the Chern character of the convolution generalising the
Hirzebruch-Riemann-Roch formula of Polishchuk and Vaintrob.Comment: 43 pages, comments welcom
Isolated Hypersurface Singularities as Noncommutative Spaces
We study the category of matrix factorizations associated to the germ of an isolated hypersurface singularity. This category is shown to admit a compact generator which is given by the stabilization of the residue field. We deduce a quasi-equivalence between the category of matrix factorizations and the dg derived category of an explicitly computable dg algebra. Building on this result, we employ a variant of Toen\u27s derived Morita theory to identify continuous functors between matrix factorization categories as integral transforms. This enables us to calculate the Hochschild chain and cochain complexes of these categories. Finally, we give interpretations of the results of this thesis in terms of noncommutative geometry based on dg categories