4,702 research outputs found

    Past electron-positron g-2 experiments yielded sharpest bound on CPT violation for point particles

    Full text link
    In our past experiments on a single electron and positron we measured the cyclotron and spin-cyclotron difference frequencies omega_c and omega_a and the ratios a = omega_a/ omega_c at omega_c = 141 Ghz for e^- and e^+ and later, only for e^-, also at 164 Ghz. Here, we do extract from these data, as had not done before, a new and very different figure of merit for violation of CPT symmetry, one similar to the widely recognized impressive limit |m_Kaon - m_Antikaon|/m_Kaon < 10^-18 for the K-mesons composed of two quarks. That expression may be seen as comparing experimental relativistic masses of particle states before and after the C, P, T operations had transformed particle into antiparticle. Such a similar figure of merit for a non-composite and quite different lepton, found by us from our Delta a = a^- - a^+ data, was even smaller, h_bar |omega_a^- - omega_a^+|/2m_0 c^2 = |Delta a| h_bar omega_c/2m_0 c^2) < 3(12) 10^-22.Comment: Improved content, Editorially approved for publication in PRL, LATEX file, 5 pages, no figures, 16

    GGZ in eerste en tweede lijn: de symptomen voorbij?

    Get PDF

    Self-Excitation and Feedback Cooling of an Isolated Proton

    Full text link
    The first one-proton self-excited oscillator (SEO) and one-proton feedback cooling are demonstrated. In a Penning trap with a large magnetic gradient, the SEO frequency is resolved to the high precision needed to detect a one-proton spin flip. This is after undamped magnetron motion is sideband-cooled to a 14 mK theoretical limit, and despite random frequency shifts (larger than those from a spin flip) that take place every time sideband cooling is applied in the gradient. The observations open a possible path towards a million-fold improved comparison of the antiproton and proton magnetic moments

    Theoretical energies of low-lying states of light helium-like ions

    Full text link
    Rigorous quantum electrodynamical calculation is presented for energy levels of the 1^1S, 2^1S, 2^3S, 2^1P_1, and 2^3P_{0,1,2} states of helium-like ions with the nuclear charge Z=3...12. The calculational approach accounts for all relativistic, quantum electrodynamical, and recoil effects up to orders m\alpha^6 and m^2/M\alpha^5, thus advancing the previously reported theory of light helium-like ions by one order in \alpha.Comment: 18 pages, 9 tables, 1 figure, with several misprints correcte

    Double scattering of light from biophotonic nanostructures with short-range order

    Full text link
    We investigate the physical mechanism for color production by isotropic nanostructures with short-range order in bird feather barbs. While the primary peak in optical scattering spectra results from constructive interference of singly-scattered light, many species exhibit secondary peaks with distinct characteristic. Our experimental and numerical studies show that these secondary peaks result from double scattering of light by the correlated structures. Without an analog in periodic or random structures, such a phenomenon is unique for short-range ordered structures, and has been widely used by nature for non-iridescent structural coloration.Comment: 10 pages, 4 figure

    The Synthescope: A Vision for Combining Synthesis with Atomic Fabrication

    Full text link
    The scanning transmission electron microscope, a workhorse instrument in materials characterization, is being transformed into an atomic-scale material manipulation platform. With an eye on the trajectory of recent developments and the obstacles toward progress in this field, we provide a vision for a path toward an expanded set of capabilities and applications. We reconceptualize the microscope as an instrument for fabrication and synthesis with the capability to image and characterize atomic-scale structural formation as it occurs. Further development and refinement of this approach may have substantial impact on research in microelectronics, quantum information science, and catalysis where precise control over atomic scale structure and chemistry of a few "active sites" can have a dramatic impact on larger scale functionality and where developing a better understanding of atomic scale processes can help point the way to larger scale synthesis approaches

    Modeling biological face recognition with deep convolutional neural networks

    Full text link
    Deep convolutional neural networks (DCNNs) have become the state-of-the-art computational models of biological object recognition. Their remarkable success has helped vision science break new ground and recent efforts have started to transfer this achievement to research on biological face recognition. In this regard, face detection can be investigated by comparing face-selective biological neurons and brain areas to artificial neurons and model layers. Similarly, face identification can be examined by comparing in vivo and in silico multidimensional "face spaces". In this review, we summarize the first studies that use DCNNs to model biological face recognition. On the basis of a broad spectrum of behavioral and computational evidence, we conclude that DCNNs are useful models that closely resemble the general hierarchical organization of face recognition in the ventral visual pathway and the core face network. In two exemplary spotlights, we emphasize the unique scientific contributions of these models. First, studies on face detection in DCNNs indicate that elementary face selectivity emerges automatically through feedforward processing even in the absence of visual experience. Second, studies on face identification in DCNNs suggest that identity-specific experience and generative mechanisms facilitate this particular challenge. Taken together, as this novel modeling approach enables close control of predisposition (i.e., architecture) and experience (i.e., training data), it may be suited to inform long-standing debates on the substrates of biological face recognition.Comment: 41 pages, 2 figures, 1 tabl

    Cavity Control of a Single-Electron Quantum Cyclotron:\\Measuring the Electron Magnetic Moment

    Full text link
    Measurements with a one-electron quantum cyclotron determine the electron magnetic moment, given by g/2=1.001 159 652 180 73 (28) [0.28 ppt]g/2 = 1.001\,159\,652\,180\,73\,(28)\,[0.28~\textrm{ppt}], and the fine structure constant, α−1=137.035 999 084 (51) [0.37 ppb]\alpha^{-1}=137.035\,999\,084\,(51)\,[0.37~\textrm{ppb}]. Brief announcements of these measurements are supplemented here with a more complete description of the one-electron quantum cyclotron and the new measurement methods, a discussion of the cavity control of the radiation field, a summary of the analysis of the measurements, and a fuller discussion of the uncertainties
    • …
    corecore