261 research outputs found

    The Study of the Pioneer Anomaly: New Data and Objectives for New Investigation

    Full text link
    Radiometric tracking data from Pioneer 10 and 11 spacecraft has consistently indicated the presence of a small, anomalous, Doppler frequency drift, uniformly changing with a rate of ~6 x 10^{-9} Hz/s; the drift can be interpreted as a constant sunward acceleration of each particular spacecraft of a_P = (8.74 \pm 1.33) x 10^{-10} m/s^2. This signal is known as the Pioneer anomaly; the nature of this anomaly remains unexplained. We discuss the efforts to retrieve the entire data sets of the Pioneer 10/11 radiometric Doppler data. We also report on the recently recovered telemetry files that may be used to reconstruct the engineering history of both spacecraft using original project documentation and newly developed software tools. We discuss possible ways to further investigate the discovered effect using these telemetry files in conjunction with the analysis of the much extended Doppler data. We present the main objectives of new upcoming study of the Pioneer anomaly, namely i) analysis of the early data that could yield the direction of the anomaly, ii) analysis of planetary encounters, that should tell more about the onset of the anomaly, iii) analysis of the entire dataset, to better determine the anomaly's temporal behavior, iv) comparative analysis of individual anomalous accelerations for the two Pioneers, v) the detailed study of on-board systematics, and vi) development of a thermal-electric-dynamical model using on-board telemetry. The outlined strategy may allow for a higher accuracy solution for a_P and, possibly, will lead to an unambiguous determination of the origin of the Pioneer anomaly.Comment: 43 pages, 40 figures, 3 tables, minor changes before publicatio

    August 1972 solar-terrestrial events: Observations of interplanetary shocks at 2.2 AU

    Get PDF
    Pioneer 10 magnetic field measurements, supplemented by previously published plasma data, have been used to identify shocks at 2.2 AU associated with the large solar flares of early August 1972. The first three flares, which gave rise to three forward shocks at Pioneer 9 and at earth, led to only a single forward shock at Pioneer 10. The plasma driver accompanying the shock has been tentatively identified. A local shock velocity at Pioneer 10 of 717 km/s has been estimated by assuming that the shock was propagating radially across the interplanetary magnetic field. This velocity and the rise time of ≃2 s imply a shock thickness of ∌1400 km, which appears to be large in comparison with the characteristic plasma lengths customarily used to account for the thickness of the earth's bow shock. This Pioneer 10 shock is identified with the second forward shock observed at Pioneer 9, which was then at 0.8 AU and radially aligned with Pioneer 10, since it was apparently the only Pioneer 9 shock that was also driven. The local velocity of the Pioneer 9 shock of 670 km/s, previously inferred by other authors, compares reasonably well with the local velocity at Pioneer 10, but both values are significantly smaller than the average value computed from the time interval required for the shock to propagate from the sun to Pioneer 9 (2220 km/s). The velocity implied by the time required to propagate from Pioneer 9 to Pioneer 10 (770 km/s) is in reasonable agreement with the local velocities. The fourth solar flare also gave rise to a forward shock at Pioneer 10 as well as at Pioneer 9. The local velocity at Pioneer 10, estimated on the basis of quasi-perpendicularity, is 660 km/s, a value which again agrees well with previously derived velocities for the Pioneer 9 shock of 670 km/s. The local velocities for this shock and the velocity between Pioneer 9 and Pioneer 10 (635 km/s) are also significantly less than the average velocity of propagation from the sun to Pioneer 9 (830 km/s). The general finding that the local velocities of both shocks are approximately equal at 0.8 and 2.2 AU but significantly slower than the average speeds nearer the sun is interpreted as evidence of a major deceleration of the shocks as they propagate outward from the sun that is essentially completed when the shocks reach 0.8 AU, there being little, if any, subsequent deceleration. This conclusion is qualitatively inconsistent with previous inferences of a deceleration of the shocks as they propagate from 0.8 to 2.2 AU. A third, reverse shock is also identified in the Pioneer 10 data which was not seen either at Pioneer 9 or at earth. The estimated speed of this shock is 530 km/s, and its estimated thickness is â‰Č500 km, which compares well with an anticipated proton inertial length of 500 km

    Rectal and oral absorption of methylprednisolone acetate

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/117227/1/cpt1979262232.pd

    Using Early Data to Illuminate the Pioneer Anomaly

    Full text link
    Analysis of the radio tracking data from the Pioneer 10/11 spacecraft at distances between about 20 - 70 AU from the Sun has consistently indicated the presence of an unmodeled, small, constant, Doppler blue shift drift of order 6 \times 10^{-9} Hz/s. After accounting for systematics, this drift can be interpreted as a constant acceleration of a_P= (8.74 \pm 1.33) \times 10^{-8} cm/s^2 directed towards the Sun, or perhaps as a time acceleration of a_t = (2.92 \pm 0.44)\times 10^{-18} s/s^2. Although it is suspected that there is a systematic origin to this anomaly, none has been unambiguously demonstrated. We review the current status of the anomaly, and then point out how the analysis of early data, which was never analyzed in detail, could allow a more clear understanding of the origin of the anomaly, be it a systematic or a manifestation of unsuspected physics.Comment: 19 pages, 6 figures, 2 tables, additional materia

    Reproducibility of CSF quantitative culture methods for estimating rate of clearance in cryptococcal meningitis.

    Get PDF
    Quantitative cerebrospinal fluid (CSF) cultures provide a measure of disease severity in cryptococcal meningitis. The fungal clearance rate by quantitative cultures has become a primary endpoint for phase II clinical trials. This study determined the inter-assay accuracy of three different quantitative culture methodologies. Among 91 participants with meningitis symptoms in Kampala, Uganda, during August-November 2013, 305 CSF samples were prospectively collected from patients at multiple time points during treatment. Samples were simultaneously cultured by three methods: (1) St. George's 100 mcl input volume of CSF with five 1:10 serial dilutions, (2) AIDS Clinical Trials Group (ACTG) method using 1000, 100, 10 mcl input volumes, and two 1:100 dilutions with 100 and 10 mcl input volume per dilution on seven agar plates; and (3) 10 mcl calibrated loop of undiluted and 1:100 diluted CSF (loop). Quantitative culture values did not statistically differ between St. George-ACTG methods (P= .09) but did for St. George-10 mcl loop (P< .001). Repeated measures pairwise correlation between any of the methods was high (r≄0.88). For detecting sterility, the ACTG-method had the highest negative predictive value of 97% (91% St. George, 60% loop), but the ACTG-method had occasional (∌10%) difficulties in quantification due to colony clumping. For CSF clearance rate, St. George-ACTG methods did not differ overall (mean -0.05 ± 0.07 log10CFU/ml/day;P= .14) on a group level; however, individual-level clearance varied. The St. George and ACTG quantitative CSF culture methods produced comparable but not identical results. Quantitative cultures can inform treatment management strategies

    A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution

    Get PDF
    BACKGROUND: Comparative genomic studies of the mitochondrion-lacking protist group Diplomonadida (diplomonads) has been lacking, although Giardia lamblia has been intensively studied. We have performed a sequence survey project resulting in 2341 expressed sequence tags (EST) corresponding to 853 unique clones, 5275 genome survey sequences (GSS), and eleven finished contigs from the diplomonad fish parasite Spironucleus salmonicida (previously described as S. barkhanus). RESULTS: The analyses revealed a compact genome with few, if any, introns and very short 3' untranslated regions. Strikingly different patterns of codon usage were observed in genes corresponding to frequently sampled ESTs versus genes poorly sampled, indicating that translational selection is influencing the codon usage of highly expressed genes. Rigorous phylogenomic analyses identified 84 genes – mostly encoding metabolic proteins – that have been acquired by diplomonads or their relatively close ancestors via lateral gene transfer (LGT). Although most acquisitions were from prokaryotes, more than a dozen represent likely transfers of genes between eukaryotic lineages. Many genes that provide novel insights into the genetic basis of the biology and pathogenicity of this parasitic protist were identified including 149 that putatively encode variant-surface cysteine-rich proteins which are candidate virulence factors. A number of genomic properties that distinguish S. salmonicida from its human parasitic relative G. lamblia were identified such as nineteen putative lineage-specific gene acquisitions, distinct mutational biases and codon usage and distinct polyadenylation signals. CONCLUSION: Our results highlight the power of comparative genomic studies to yield insights into the biology of parasitic protists and the evolution of their genomes, and suggest that genetic exchange between distantly-related protist lineages may be occurring at an appreciable rate in eukaryote genome evolution

    Bioengineered lungs generated from human iPSCs‐derived epithelial cells on native extracellular matrix

    Full text link
    The development of an alternative source for donor lungs would change the paradigm of lung transplantation. Recent studies have demonstrated the potential feasibility of using decellularized lungs as scaffolds for lung tissue regeneration and subsequent implantation. However, finding a reliable cell source and the ability to scale up for recellularization of the lung scaffold still remain significant challenges. To explore the possibility of regeneration of human lung tissue from stem cells in vitro, populations of lung progenitor cells were generated from human iPSCs. To explore the feasibility of producing engineered lungs from stem cells, we repopulated decellularized human lung and rat lungs with iPSC‐derived epithelial progenitor cells. The iPSCs‐derived epithelial progenitor cells lined the decellularized human lung and expressed most of the epithelial markers when were cultured in a lung bioreactor system. In decellularized rat lungs, these human‐derived cells attach and proliferate in a manner similar to what was observed in the decellularized human lung. Our results suggest that repopulation of lung matrix with iPSC‐derived lung epithelial cells may be a viable strategy for human lung regeneration and represents an important early step toward translation of this technology.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142929/1/term2589.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142929/2/term2589_am.pd

    Saturn's Magnetic Field and Magnetosphere

    Get PDF
    The Pioneer Saturn vector helium magnetometer has detected a bow shock and magnetopause at Saturn and has provided an accurate characterization of the planetary field. The equatorial surface field is 0.20 gauss, a factor of 3 to 5 times smaller than anticipated on the basis of attempted scalings from Earth and Jupiter. The tilt angle between the magnetic dipole axis and Saturn's rotation axis is < 1°, a surprisingly small value. Spherical harmonic analysis of the measurements shows that the ratio of quadrupole to dipole moments is < 10 percent, indicating that the field is more uniform than those of the Earth or Jupiter and consistent with Saturn having a relatively small core. The field in the outer magnetosphere shows systematic departures from the dipole field, principally a compression of the field near noon and an equatorial orientation associated with a current sheet near dawn. A hydromagnetic wake resulting from the interaction of Titan with the rotating magnetosphere appears to have been observed

    Saturn's Magnetic Field and Magnetosphere

    Full text link

    Anthropogenic Space Weather

    Full text link
    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure
    • 

    corecore