1,078 research outputs found

    Spin Hall effects in diffusive normal metals

    Full text link
    We consider spin and charge flow in normal metals. We employ the Keldysh formalism to find transport equations in the presence of spin-orbit interaction, interaction with magnetic impurities, and non-magnetic impurity scattering. Using the quasiclassical approximation, we derive diffusion equations which include contributions from skew scattering, side-jump scattering and the anomalous spin-orbit induced velocity. We compute the magnitude of various spin Hall effects in experimental relevant geometries and discuss when the different scattering mechanisms are important.Comment: 10 pages, 4 figure

    Radial Spin Helix in Two-Dimensional Electron Systems with Rashba Spin-Orbit Coupling

    Full text link
    We suggest a long-lived spin polarization structure, a radial spin helix, and study its relaxation dynamics. For this purpose, starting with a simple and physically clear consideration of spin transport, we derive a system of equations for spin polarization density and find its general solution in the axially symmetric case. It is demonstrated that the radial spin helix of a certain period relaxes slower than homogeneous spin polarization and plain spin helix. Importantly, the spin polarization at the center of the radial spin helix stays almost unchanged at short times. At longer times, when the initial non-exponential relaxation region ends, the relaxation of the radial spin helix occurs with the same time constant as that describing the relaxation of the plain spin helix.Comment: 9 pages, 7 figure

    Hanle effect driven by weak-localization

    Full text link
    The influence of weak localization on Hanle effect in a two-dimensional system with spin-split spectrum is considered. We show that weak localization drastically changes the dependence of stationary spin polarization S\mathbf S on external magnetic field B.B. In particular, the non-analytic dependence of S\mathbf S on B\mathbf B is predicted for III-V-based quantum wells grown in [110] direction and for [100]-grown quantum wells having equal strengths of Dresselhaus and Bychkov-Rashba spin-orbit coupling. It is shown that in weakly localized regime the components of S\mathbf S are discontinuous at B=0.B=0. At low B,B, the magnetic field-induced rotation of the stationary polarization is determined by quantum interference effects. This implies that the Hanle effect in such systems is totally driven by weak localization.Comment: 4 pages, 1 figur

    Theory of electric-field-induced spin accumulation and spin current in the two-dimensional Rashba model

    Full text link
    Based on the spin-density-matrix approach, both the electric-field-induced spin accumulation and the spin current are systematically studied for the two-dimensional Rashba model. Eigenmodes of spin excitations give rise to resonances in the frequency domain. Utilizing a general and physically well-founded definition of the spin current, we obtain results that differ remarkably from previous findings. It is shown that there is a close relationship between the spin accumulation and the spin current, which is due to the prescription of a quasi-chemical potential and which does not result from a conservation law. Physical ambiguities are removed that plagued former approaches with respect to a spin-Hall current that is independent of the electric field. For the clean Rashba model, the intrinsic spin-Hall conductivity exhibits a logarithmic divergency in the low-frequency regime.Comment: 19 pages including figure

    Spin Hall effect in a system of Dirac fermions in the honeycomb lattice with intrinsic and Rashba spin-orbit interaction

    Full text link
    We consider spin Hall effect in a system of massless Dirac fermions in a graphene lattice. Two types of spin-orbit interaction, pertinent to the graphene lattice, are taken into account - the intrinsic and Rashba terms. Assuming perfect crystal lattice, we calculate the topological contribution to spin Hall conductivity. When both interactions are present, their interplay is shown to lead to some peculiarities in the dependence of spin Hall conductivity on the Fermi level.Comment: 7 pages, 5 figure

    Charge Carrier Concentration and Temperature Dependent Recombination in Polymer Fullerene Solar Cells

    Full text link
    We performed temperature dependent transient photovoltage and photocurrent measurements on poly(3-hexylthiophene):[6,6]-phenyl-C61 butyric acid methylester bulk heterojuction solar cells. We found a strongly charge carrier concentration and temperature dependent Langevin recombination prefactor. The observed recombination mechanism is discussed in terms of bimolecular recombination. The experimental results were compared with charge carrier extraction by linearly increasing voltage (photo-CELIV) measurements done on the same blend system. We explain the charge carrier dynamics, following an apparent order larger than two, by dynamic trapping of charges in the tail states of the gaussian density of states.Comment: 4 pages, 3 figures, 1 tabl
    corecore