825 research outputs found
Spin Hall effect in a system of Dirac fermions in the honeycomb lattice with intrinsic and Rashba spin-orbit interaction
We consider spin Hall effect in a system of massless Dirac fermions in a
graphene lattice. Two types of spin-orbit interaction, pertinent to the
graphene lattice, are taken into account - the intrinsic and Rashba terms.
Assuming perfect crystal lattice, we calculate the topological contribution to
spin Hall conductivity. When both interactions are present, their interplay is
shown to lead to some peculiarities in the dependence of spin Hall conductivity
on the Fermi level.Comment: 7 pages, 5 figure
Spin Hall effects in diffusive normal metals
We consider spin and charge flow in normal metals. We employ the Keldysh
formalism to find transport equations in the presence of spin-orbit
interaction, interaction with magnetic impurities, and non-magnetic impurity
scattering. Using the quasiclassical approximation, we derive diffusion
equations which include contributions from skew scattering, side-jump
scattering and the anomalous spin-orbit induced velocity. We compute the
magnitude of various spin Hall effects in experimental relevant geometries and
discuss when the different scattering mechanisms are important.Comment: 10 pages, 4 figure
Radial Spin Helix in Two-Dimensional Electron Systems with Rashba Spin-Orbit Coupling
We suggest a long-lived spin polarization structure, a radial spin helix, and
study its relaxation dynamics. For this purpose, starting with a simple and
physically clear consideration of spin transport, we derive a system of
equations for spin polarization density and find its general solution in the
axially symmetric case. It is demonstrated that the radial spin helix of a
certain period relaxes slower than homogeneous spin polarization and plain spin
helix. Importantly, the spin polarization at the center of the radial spin
helix stays almost unchanged at short times. At longer times, when the initial
non-exponential relaxation region ends, the relaxation of the radial spin helix
occurs with the same time constant as that describing the relaxation of the
plain spin helix.Comment: 9 pages, 7 figure
Theory of electric-field-induced spin accumulation and spin current in the two-dimensional Rashba model
Based on the spin-density-matrix approach, both the electric-field-induced
spin accumulation and the spin current are systematically studied for the
two-dimensional Rashba model. Eigenmodes of spin excitations give rise to
resonances in the frequency domain. Utilizing a general and physically
well-founded definition of the spin current, we obtain results that differ
remarkably from previous findings. It is shown that there is a close
relationship between the spin accumulation and the spin current, which is due
to the prescription of a quasi-chemical potential and which does not result
from a conservation law. Physical ambiguities are removed that plagued former
approaches with respect to a spin-Hall current that is independent of the
electric field. For the clean Rashba model, the intrinsic spin-Hall
conductivity exhibits a logarithmic divergency in the low-frequency regime.Comment: 19 pages including figure
Hanle effect driven by weak-localization
The influence of weak localization on Hanle effect in a two-dimensional
system with spin-split spectrum is considered. We show that weak localization
drastically changes the dependence of stationary spin polarization
on external magnetic field In particular, the non-analytic dependence of
on is predicted for III-V-based quantum wells grown in
[110] direction and for [100]-grown quantum wells having equal strengths of
Dresselhaus and Bychkov-Rashba spin-orbit coupling. It is shown that in weakly
localized regime the components of are discontinuous at At
low the magnetic field-induced rotation of the stationary polarization is
determined by quantum interference effects. This implies that the Hanle effect
in such systems is totally driven by weak localization.Comment: 4 pages, 1 figur
Controlling the spin orientation of photoexcited electrons by symmetry breaking
We study reflection of optically spin-oriented hot electrons as a means to
probe the semiconductor crystal symmetry and its intimate relation with the
spin-orbit coupling. The symmetry breaking by reflection manifests itself by
tipping the net-spin vector of the photoexcited electrons out of the light
propagation direction. The tipping angle and the pointing direction of the
net-spin vector are set by the crystal-induced spin precession, momentum
alignment and spin-momentum correlation of the initial photoexcited electron
population. We examine non-magnetic semiconductor heterostructures and
semiconductor/ferromagnet systems and show the unique signatures of these
effects.Comment: 4 pages, 3 figures, resubmitte
Spin relaxation of localized electrons in n-type semiconductors
The mechanisms that determine spin relaxation times of localized electrons in
impurity bands of n-type semiconductors are considered theoretically and
compared with available experimental data. The relaxation time of the
non-equilibrium angular momentum is shown to be limited either by hyperfine
interaction, or by spin-orbit interaction in course of exchange-induced spin
diffusion. The energy relaxation time in the spin system is governed by
phonon-assisted hops within pairs of donors with an optimal distance of about 4
Bohr radii. The spin correlation time of the donor-bound electron is determined
either by exchange interaction with other localized electrons, or by spin-flip
scattering of free conduction-band electrons. A possibility of optical cooling
of the spin system of localized electrons is discussed.Comment: Submitted to the special issue "Optical Orientation", Semiconductor
Science and Technolog
- …