36 research outputs found

    DecSerFlow: Towards a Truly Declarative Service Flow Language

    Get PDF
    The need for process support in the context of web services has triggered the development of many languages, systems, and standards. Industry has been developing software solutions and proposing standards such as BPEL, while researchers have been advocating the use of formal methods such as Petri nets and pi-calculus. The languages developed for service flows, i.e., process specification languages for web services, have adopted many concepts from classical workflow management systems. As a result, these languages are rather procedural and this does not fit well with the autonomous nature of services. Therefore, we propose DecSerFlow as a Declarative Service Flow Language. DecSerFlow can be used to specify, enact, and monitor service flows. The language is extendible (i.e., constructs can be added without changing the engine or semantical basis) and can be used to enforce or to check the conformance of service flows. Although the language has an appealing graphical representation, it is grounded in temporal logic

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)

    Beam-induced backgrounds measured in the ATLAS detector during local gas injection into the LHC beam vacuum

    Get PDF
    Inelastic beam-gas collisions at the Large Hadron Collider (LHC), within a few hundred metres of the ATLAS experiment, are known to give the dominant contribution to beam backgrounds. These are monitored by ATLAS with a dedicated Beam Conditions Monitor (BCM) and with the rate of fake jets in the calorimeters. These two methods are complementary since the BCM probes backgrounds just around the beam pipe while fake jets are observed at radii of up to several metres. In order to quantify the correlation between the residual gas density in the LHC beam vacuum and the experimental backgrounds recorded by ATLAS, several dedicated tests were performed during LHC Run 2. Local pressure bumps, with a gas density several orders of magnitude higher than during normal operation, were introduced at different locations. The changes of beam-related backgrounds, seen in ATLAS, are correlated with the local pressure variation. In addition the rates of beam-gas events are estimated from the pressure measurements and pressure bump profiles obtained from calculations. Using these rates, the efficiency of the ATLAS beam background monitors to detect beam-gas events is derived as a function of distance from the interaction point. These efficiencies and characteristic distributions of fake jets from the beam backgrounds are found to be in good agreement with results of beam-gas simulations performed with theFluka Monte Carlo programme

    Simultaneous energy and mass calibration of large-radius jets with the ATLAS detector using a deep neural network

    Get PDF
    The energy and mass measurements of jets are crucial tasks for the Large Hadron Collider experiments. This paper presents a new calibration method to simultaneously calibrate these quantities for large-radius jets measured with the ATLAS detector using a deep neural network (DNN). To address the specificities of the calibration problem, special loss functions and training procedures are employed, and a complex network architecture, which includes feature annotation and residual connection layers, is used. The DNN-based calibration is compared to the standard numerical approach in an extensive series of tests. The DNN approach is found to perform significantly better in almost all of the tests and over most of the relevant kinematic phase space. In particular, it consistently improves the energy and mass resolutions, with a 30% better energy resolution obtained for transverse momenta pT > 500 GeV

    Electron and photon energy calibration with the ATLAS detector using LHC Run 2 data

    Get PDF
    This paper presents the electron and photon energy calibration obtained with the ATLAS detector using 140 fb-1 of LHC proton-proton collision data recorded at √(s) = 13 TeV between 2015 and 2018. Methods for the measurement of electron and photon energies are outlined, along with the current knowledge of the passive material in front of the ATLAS electromagnetic calorimeter. The energy calibration steps are discussed in detail, with emphasis on the improvements introduced in this paper. The absolute energy scale is set using a large sample of Z-boson decays into electron-positron pairs, and its residual dependence on the electron energy is used for the first time to further constrain systematic uncertainties. The achieved calibration uncertainties are typically 0.05% for electrons from resonant Z-boson decays, 0.4% at ET ∼ 10 GeV, and 0.3% at ET ∼ 1 TeV; for photons at ET ∼ 60 GeV, they are 0.2% on average. This is more than twice as precise as the previous calibration. The new energy calibration is validated using J/ψ → ee and radiative Z-boson decays

    Performance and calibration of quark/gluon-jet taggers using 140 fb−1 of pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    The identification of jets originating from quarks and gluons, often referred to as quark/gluon tagging, plays an important role in various analyses performed at the Large Hadron Collider, as Standard Model measurements and searches for new particles decaying to quarks often rely on suppressing a large gluon-induced background. This paper describes the measurement of the efficiencies of quark/gluon taggers developed within the ATLAS Collaboration, using √s = 13 TeV proton–proton collision data with an integrated luminosity of 140 fb-1 collected by the ATLAS experiment. Two taggers with high performances in rejecting jets from gluon over jets from quarks are studied: one tagger is based on requirements on the number of inner-detector tracks associated with the jet, and the other combines several jet substructure observables using a boosted decision tree. A method is established to determine the quark/gluon fraction in data, by using quark/gluon-enriched subsamples defined by the jet pseudorapidity. Differences in tagging efficiency between data and simulation are provided for jets with transverse momentum between 500 GeV and 2 TeV and for multiple tagger working points

    Measurements of the production cross-section for a Z boson in association with b- or c-jets in proton–proton collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the production cross-section of a Z boson in association with bor c-jets, in proton–proton collisions at √s = 13 TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 140 fb−1. Inclusive and differential cross-sections are measured for events containing a Z boson decaying into electrons or muons and produced in association with at least one b-jet, at least one c-jet, or at least two b-jets with transverse momentum pT > 20 GeV and rapidity |y| < 2.5. Predictions from several Monte Carlo generators based on next-to-leading-order matrix elements interfaced with a parton-shower simulation, with different choices of flavour schemes for initial-state partons, are compared with the measured cross-sections. The results are also compared with novel predictions, based on infrared and collinear safe jet flavour dressing algorithms. Selected Z+ ≥ 1 c-jet observables, optimized for sensitivity to intrinsic-charm, are compared with benchmark models with different intrinsic-charm fractions

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. Funding: Bill & Melinda Gates Foundation
    corecore