2 research outputs found

    Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression

    No full text
    Background: The recently identified RASSF1 locus is located within a 120-kilobase region of chromosome 3p21.3 that frequently undergoes allele loss in lung and breast cancers. We explored the hypothesis that RASSF1 encodes a tumor suppressor gene for lung and breast cancers. Methods: We assessed expression of two RASSF1 gene products, RASSF1A and RASSF1C, and the methylation status of their respective promoters in 27 non-small-cell lung cancer (NSCLC) cell lines, in 107 resected NSCLCs, in 47 small-cell lung cancer (SCLC) cell lines, in 22 breast cancer cell lines, in 39 resected breast cancers, in 104 nonmalignant lung samples, and in three breast and lung epithelial cultures. We also transfected a lung cancer cell line that lacks RASSF1A expression with vectors containing RASSF1A complementary DNA to determine whether exogenous expression of RASSF1A would affect in vitro growth and in vivo tumorigenicity of this cell line. All statistical tests were two-sided. Results: RASSF1A messenger RNA was expressed in nonmalignant epithelial cultures but not in 100% of the SCLC, in 65% of the NSCLC, or in 60% of the breast cancer lines. By contrast, RASSF1C was expressed in all nonmalignant cell cultures and in nearly all cancer cell lines. RASSF1A promoter hypermethylation was detected in 100% of SCLC, in 63% of NSCLC, in 64% of breast cancer lines, in 30% of primary NSCLCs, and in 49% of primary breast tumors but in none of the nonmalignant lung tissues. RASSF1A promoter hypermethylation in resected NSCLCs was associated with impaired patient survival (P = .046). Exogenous expression of RASSF1A in a cell line lacking expression decreased in vitro colony formation and in vivo tumorigenicity. Conclusion: RASSF1A is a potential tumor suppressor gene that undergoes epigenetic inactivation in lung and breast cancers through hypermethylation of its promoter region

    The 630-kb Lung Cancer Homozygous Deletion Region on Human Chromosome 3p21.3: Identification and Evaluation of the Resident Candidate Tumor Suppressor Genes.

    No full text
    We used overlapping and nested homozygous deletions, contig building, genomic sequencing, and physical and transcript mapping to further define a ∼630-kb lung cancer homozygous deletion region harboring one or more tumor suppressor genes (TSGs) on chromosome 3p21.3. This location was identified through somatic genetic mapping in tumors, cancer cell lines, and premalignant lesions of the lung and breast, including the discovery of several homozygous deletions. The combination of molecular manual methods and computational predictions permitted us to detect, isolate, characterize, and annotate a set of 25 genes that likely constitute the complete set of protein-coding genes residing in this ∼630-kb sequence. A subset of 19 of these genes was found within the deleted overlap region of ∼370-kb. This region was further subdivided by a nesting 200-kb breast cancer homozygous deletion into two gene sets: 8 genes lying in the proximal ∼120-kb segment and 11 genes lying in the distal ∼250-kb segment. These 19 genes were analyzed extensively by computational methods and were tested by manual methods for loss of expression and mutations in lung cancers to identify candidate TSGs from within this group. Four genes showed loss-of-expression or reduced mRNA levels in non-small cell lung cancer (CACNA2D2/α2δ-2, SEMA3B [formerly SEMA(V), BLU, and HYAL1] or small cell lung cancer (SEMA3B, BLU, and HYAL1) cell lines. We found six of the genes to have two or more amino acid sequence-altering mutations including BLU, NPRL2/Gene21, FUS1, HYAL1, FUS2, and SEMA3B. However, none of the 19 genes tested for mutation showed a frequent (>10%) mutation rate in lung cancer samples. This led us to exclude several of the genes in the region as classical tumor suppressors for sporadic lung cancer. On the other hand, the putative lung cancer TSG in this location may either be inactivated by tumor-acquired promoter hypermethylation or belong to the novel class of haploinsufficient genes that predispose to cancer in a hemizygous (1/2) state but do not show a second mutation in the remaining wild-type allele in the tumor. We discuss the data in the context of novel and classic cancer gene models as applied to lung carcinogenesis. Further functional testing of the critical genes by gene transfer and gene disruption strategies should permit the identification of the putative lung cancer TSG(s), LUCA. Analysis of the ∼630-kb sequence also provides an opportunity to probe and understand the genomic structure, evolution, and functional organization of this relatively gene-rich region
    corecore